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a b s t r a c t

A new modification of homotopy analysis method (HAM) is proposed in this paper. The
auxiliary differential operator is specifically chosen so that more than one secular term
must be eliminated. The proposed method can capture asymmetric and period-2 solutions
with satisfactory accuracy and hence can be used to predict symmetry-breaking and per-
iod-doubling bifurcation points. The variation of accuracy is investigated when different
number of frequencies are considered.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Bifurcation refers to a qualitative change in periodic orbits (or equilibrium points), or in their stability attributes, caused
by a small variation in system parameters. Bifurcations are important phenomena which exist in the behavior of many non-
linear systems and are closely related to system stability and more complicated behavior such as chaos. If an analytical
method cannot be used to investigate bifurcations, then the understanding of nonlinear systems that it brings to us will
be insufficient. Although there is a vast literature [1–6] investigating nonlinear systems through analytical methods, few
studies attempted to investigate bifurcation phenomena with these analytical methods. Tesi et al. proposed to use a combi-
nation of the Loeb criterion, a criterion for numerically determining the stability of a limit cycle, and the first-order harmonic
balance approximation to investigate period-doubling bifurcations and showed that this method could be applied in con-
junction with a control design to delay or even eliminate a period-doubling cascade to chaos [7]. Bonani and Gilli put forward
an approach for investigating limit-cycle bifurcations in nonlinear control systems, which not only detected bifurcations of
the limit cycles, but also calculated the Floquet multipliers as the roots of an algebraic equation as well as determined the
stability [8]. Berns et al. proposed a quasi-analytical computational scheme for predicting period-doubling bifurcation based
one high-order harmonic balance analysis and characteristic multiplier tracking [9]. Luo and Huang analytically predicted
period-m solutions of a periodically excited Düffing oscillator with the generalized harmonic balance method [10]; Luo
and Huang presented the analytical expressions for period-m flows and chaos of a damped Düffing oscillator subjected to
harmonic excitation [11]; Luo and Huang derived the analytical period-1 solution to a Düffing oscillator with harmonic exci-
tation and a twin-well potential and studied the routes of the period-1 motion to chaos [12]; the three papers successfully
derived analytical period-m solutions and predicted their stability and bifurcations as well the routes to chaos.
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Analytical study on the dynamics of nonlinear systems dates back to early celestial mechanics. In 1830, Poisson first intro-
duced an early form of the perturbation methods which obtained periodic solutions based on a power series expansion with
respect to a small change of a parameter in the nonlinear system. Lindstedt put forward a variant of the perturbation method
without strict mathematical foundation [13]. It was not until 1892 that the mathematical foundation of the perturbation
method was established by Poincaré [14]. Standard perturbation methods like the Lindstedt–Poincaré method work very
well for celestial bodies where the oscillations are subjected to weak nonlinearity most of the time, but will yield large errors
when the investigated system has strong nonlinearity. However, in many disciplines like mechanical engineering, earth-
quake engineering, and structural engineering, strongly nonlinear dynamic systems are very common. Therefore, numerous
studies have attempted to find analytical methods for solving strongly nonlinear differential equations. Burton proposed a
modified Lindstedt–Poincaré method which can be applied to systems with strong nonlinearity [15]. The standard method
of multi-scale was modified by Burton and Rahman to enable accurate periodic solutions to be acquired for strongly nonlin-
ear oscillators [16]. Cheung et al. introduced a new parameter which can always be kept small regardless of the magnitude of
the original system parameters [17]. Liao combined the concept of homotopy in topology with Maclaurin series expansion
and developed a method called the homotopy analysis method (HAM) [18]. HAM also works for strongly nonlinear systems
[19–21]. Although a number of analytical methods for strongly nonlinear systems have been put forward, they can only be
used to obtain periodic solutions of some selected nonlinear problems, which are mostly period-one solutions. Most of the
bifurcation phenomena like symmetry-breaking bifurcations and period-doubling bifurcations are beyond the capability of
these existing analytical methods.

Nayfeh and Balachandran described a route to chaos, which is now basically the most well-known one [22]. This route to
chaos starts with a symmetry-breaking bifurcation and period-doubling bifurcations. Typically a symmetry-breaking bifur-
cation occurs prior to a period-doubling bifurcation, which is followed by a cascade of period-doubling bifurcations [23,24].
Finally it reaches the onset of chaos. One of the examples reported in [22] is for the following Düffing oscillator.

€xþ c _xþ x� x3 ¼ F cos Xt: ð1Þ

For the Düffing oscillator represented by Eq. (1), parameters held constant are c at 0.4 and X at 0.8. When F is equal to 0.350,
one stable symmetric period-one oscillation occurs. Its limit cycle and amplitude of frequency components are presented in
Fig. 1(a) and (b), respectively.

When F increases to 0.380, the steady-state solution becomes asymmetric as shown in Fig. 2(a), which suggests a
symmetry-breaking bifurcation has already occurred. The appearance of a constant term can be easily seen as a zeroth order
harmonic in Fig. 2(b).

When the excitation amplitude F further increases to 0.386, a period-2 steady-state solution arises as shown in Fig. 3(a),
which suggests a period-doubling bifurcation occurs between F ¼ 0:380 and F ¼ 0:386. The appearance of a frequency
component at X

2 can be seen in Fig. 3(b).
In the present paper, a new analytical procedure for obtaining approximate solutions for strongly nonlinear problems will

be outlined in the framework of HAM. This new procedure will be applied to investigate symmetry-breaking bifurcations and
period-doubling bifurcations of a Düffing oscillator.

2. Formulation of multi-frequency HAM

To start the procedure of multi-frequency HAM (MFHAM), an auxiliary linear differential operator conveying information
of n (n is an arbitrary positive integer) fundamental frequencies needs to be constructed.
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Fig. 1. The limit cycle of a symmetric period-one solution. (a) A symmetric limit cycle and (b) harmonic components.
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