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a b s t r a c t

This paper proposed a numerical algorithm based on precise integration method to inves-
tigate the aeroelastic system of an airfoil with a freeplay. The system was split into three
linear sub-systems separated by switching points related with the freeplay. A predictor–
corrector algorithm was constructed to tackle the key computational obstacle in accurately
searching system responses passing the switching points. With the aid of the algorithm, the
precise integration method can solve the sub-systems one by one and provide solutions to
any desired accuracy compared with exact solutions. Moreover, it can keep high precision
with the step length increasing. The precise integration method is more accurate and
efficient than the Runge–Kutta method with the same time step. In addition, the
Runge–Kutta sometimes provides limit cycle oscillations, bifurcation charts or chaotic
responses falsely even though the step length is much smaller than that adopted in precise
integration method. Due to the high precision and efficiency, the presented approach has
potential to become a benchmark for solution techniques for piecewise nonlinear
dynamical systems.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Predicting the nonlinear aeroelastic responses of an airfoil has stimulated the curiosity and interests of many researchers
for years [1,2]. Liu and Dowell [3] investigated the aeroelastic system with a cubic pitching stiffness by the harmonic balance
method. The harmonic balancing was combined with an optimization technique by Chen et al. [4] for solving an airfoil-store
aeroelastic witch cubic stiffness. Equivalent linearization [5] can also be applied in solving nonlinear aeroelastic systems. A
detailed bibliography on this topic was given in Refs. [1,2].

In most cases, it is cumbersome and expensive, or even impossible, to obtain exact solutions of nonlinear aeroelastic
systems. It is therefore necessary to employ numerical techniques in validating the results provided by the analytical or
semi-analytical approaches [1–5]. Numerical simulations in nonlinear aeroelastics can be performed based on the state
space models [6,7]. These models were generally solved by time-marching integration techniques such as the Runge–Kutta
(RK) and Newmark methods, etc [8–11].

The precise integration method (PIM) initiated by Zhong [12] has been widely applied to various problems modeled by
ordinary differential equations such as structural dynamics, optimal control, and flexible multi-body dynamics problems, etc
[13–17]. This method is famous for its high accuracy and computation efficiency. In this paper, the PIM was applied to
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simulate the aeroelastic responses of an airfoil with a freeplay. This study was motivated by the locally linear property of the
aeroelastic system with a piecewise freeplay and the fact that the PIM was extremely suitable for linear systems.

The aeroelastic system was first divided into three subsystems according to the freeplay. Between the subsystems, there
are switching points. A troublesome problem in simulating piecewise linear systems was confronted in determining the
vibration response passing the switching points [18,19]. Lin and Cheng [18] found that an entirely incorrect asymptotic
behavior can occur due to the accumulative error in tracking switching points by the RK method. Significant discrepancies
between the exact and numerical solutions may sometimes be observed. In order to tackle this problem, a predictor–correc-
tor algorithm was proposed in Section 3.

2. Equations of motions

We considered the two-degree-of-freedom airfoil oscillating in pitch and plunge directions. The symbols appear in this
model are given in Fig. 1.

The pitch angle about the elastic axis is denoted by a, positive with the nose up; the plunge deflection is denoted by h, posi-
tive in the downward direction. The elastic axis is located at a distance ahb from the mid-chord, and the mass center is located
at a distance xab from the elastic axis. In terms of non-dimensional time t ¼ xat1 (t1 is the real time) and non-dimensional
plunge displacement n ¼ h=b, the coupled motions of the airfoil in incompressible unsteady flow can be modeled as follows
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where the superscript denotes the differentiation with respect to t; U� is a non-dimensional velocity defined as U� ¼ U=bxa,
and �x is given by �x ¼ xn=xa. Symbols xn and xa are the natural frequencies of the uncoupled plunging and pitching modes
respectively; fa and fn are the damping ratios; GðnÞ and MðaÞ represent the nonlinear plunge and pitch stiffness terms,
respectively. The coefficients c0 � c9; d0 � d9 can be referred to Liu and Dowell [3]. Parameters wi’s that depend upon n
and a are given as
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with the constants as e1 ¼ 0:0455; e2 ¼ 0:3. By introducing a variable vector X ¼ x1; x2; . . . ; x8ð ÞT with
x1 ¼ a; x2 ¼ _a; x3 ¼ n; x4 ¼ _n; x5 ¼ w1; x6 ¼ w2; x7 ¼ w3; x8 ¼ w4, the coupled state space system given by Eq. (1) can be rewrit-
ten as a set of eight first-order ordinary differential equations as
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Fig. 1. The sketch of an airfoil oscillating in pitch (a) direction with respect to the elastic axis, and in plunge (h) direction measured from the mean position.
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