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a b s t r a c t

The main objective of this paper is to propose a new generalisation of the Helmholtz
decomposition theorem for both fractional time and space, which leads to four equations
generalising the Maxwell equations that emerge as particular case. To get these results
the well-known classical vectorial operators, gradient, divergence, curl, and laplacian are
generalised to fractional orders using Grünwald–Letnikov approach.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. On the fractional world

Fractional Calculus was born at the same time of the integer order Calculus [26,34,47,65]. However only in the last thirty
years left the Mathematical ghetto and started invading the application world, namely Physics and Engineering. This delay
may be due to the lack of simple geometrical interpretation and some analytical difficulty. Any way it is giving rise to very
interesting applications in a lot of fields [30] – see [33] for other references – as Physics [7,11,12,27,28], Biology [59],
Biomedical Engineering [19,29,34], Financial market [30], Signal Processing [33] to refer only a few.

Besides the electromagnetism that we will consider next, Fractional Calculus is an essential tool for long memory
and long range processes. This nonlocality in time and space can be found in a lot of phenomena, as the diffusion
[34,35,38–40]. The anomalous porous media [53] and in general the fractional spaces [6] have been also an interesting sub-
ject of study. The application of Fractional Calculus to modelling mechanical systems has been growing also, from the 1-D
case [66] to the n-D [61–63]. This has been done through fractional generalisation of Hamiltonian and gradient dynamical
systems [11,61–63]. The viscoelasticity is another subject of active research [36]. The general case of field theories has been
considered by Herrmann [17,18].

http://dx.doi.org/10.1016/j.cnsns.2014.09.004
1007-5704/� 2014 Elsevier B.V. All rights reserved.

1 Also with INESC-ID, Lisbon.
⇑ Corresponding author.

E-mail addresses: mdo@fct.unl.pt (M.D. Ortigueira), mrivero@ullmat.es (M. Rivero), jtrujill@ullmat.es (J.J. Trujillo).

Commun Nonlinear Sci Numer Simulat 22 (2015) 1036–1049

Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2014.09.004&domain=pdf
http://dx.doi.org/10.1016/j.cnsns.2014.09.004
mailto:mdo@fct.unl.pt
mailto:mrivero@ullmat.es
mailto:jtrujill@ullmat.es
http://dx.doi.org/10.1016/j.cnsns.2014.09.004
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


1.2. On the fractional Electromagnetism

We can state the beginning of the fractional Electromagnetism on the famous Curie Law (1889) not understandable in the
context of classic theory [68]. This is an empirical law stating that the current through a capacitor is given by the following
power law iðtÞ ¼ h:V0ta; t > 0, where h and 0 < a < 1 are constants, V0 is the DC voltage applied at t ¼ 0. A second example
is the relaxation phenomena in dielectrics; it was shown to be better described by a fractional model (Cole–Cole [8,9]).
Recently a suitable modification to their formula allowed the modelling of the complex permittivity of several dielectric
materials [67]. The Constant Phase Elements and in particular the Warburg impedance constitute a group of devices that
are represented in amplitude Bode plot by a straight line with slope less than 20 dB per decade and a constant phase less
than p=2 [5]. For instance the Electrochemical Capacitors (ECs) [10,37], also known as double layer capacitors, supercapac-
itors or ultracapacitors, accumulate the electric energy like the traditional capacitors, but they: (a) have a large capacitance
(of the order of thousand Farad); (b) have very small active resistance (some milli Ohm or hundreds micro Ohm); (c) are able
to perform several hundred thousand charge and discharge cycles; (d) have the outstanding characteristic of high power
delivery; (e) have long useful life, and (f) supply a power density considerably higher than that of batteries. These charac-
teristics make them suitable for a variety of current applications where short, high-power pulses are required such as hybrid
electric vehicle, power electronics and telecommunications. The main difference between ECs and conventional capacitors
lies in the energy storage. The ECs use the Electric Double Layer for accumulating of the electric energy. Each consists of
two electrodes and the space between them is filled with an electrolyte. At the middle there is a separator. The correct model
is fractional [23,37].

Two other interesting applications were presented recently: a Magnetoresistive Current Sensor [3] and a CMOS-Based
Terahertz Integrated Circuit that was modelled as a Causal Fractional-Order RLGC Transmission Line Model [57]. Also a frac-
tional coil was studied in [58]. Other fractional electric behaviours can be found in Nature as in fruits [22] and biomaterials
[34]. The spatial dispersion in Electrodynamics as a fractional phenomenon was studied in [64]. Meanwhile the study of frac-
tional circuits has been done in several papers [24,31,2,15].

The description of these examples had in mind motivate the need for a development of fractional Maxwell equations. Sev-
eral attempts into this goal have been done. The first can be considered the introduction of a fractional curl by Engheta [14].
Since then several proposals have been done [4,13,20,41,42,56,60]. However we can not say that they are satisfactory enough
to be accepted as true generalisations of the classic equations. We will try to overcome this problem.

1.3. New results

The generalisation of the well-known vectorial operators: gradient, divergence, curl, and laplacian is a urgent need for
enlarging their application field. Some attempts have been made, for example in [12,38,60], but we can say that much work
remains to be done. Without intending to do analysis of such proposals, we are going to introduce a new approach. We start
by the space version of the fractional forward and backward Grünwald–Letnikov derivatives as presented in [47]. From them
we define two fractional gradients and from them the other operators: divergences, curls and laplacians. These operators are
backward compatible in the sense that they recover the classic when the order is 1.

An important aspect of our formulation concerns the use of different orders for different directions. This non-local tools
that, unlikely to the classic, look more suitable for dealing with non homogeneous and anisotropic media. Although we use
constant derivative orders there is nothing impeding us to make them variable. This would enlarge the application range to
very complex media.

With those operators we reformulate the classic Helmholtz decomposition theorem for fractional space and time, which
maybe is the main result. From it we deduce two sets of fractional partial differential equations for two intensity fields in a
Maxwell fashion that lead to the fractional Maxwell equations generalising the classic equations base of the classical
Electromagnetism theory.

1.4. Remarks

� We will assume that we are working on R3 and the set fe1; e2; e3g constitutes its standard orthonormal base.
� Each vector has the representation

v ¼ vxe1 þ vye2 þ vze3

� A scalar function f is defined on R3 and represented by f ðx; y; zÞ.
� A vectorial function will be represented by

fðx; y; zÞ ¼ f xðx; y; zÞe1 þ f yðx; y; zÞe2 þ f zðx; y; zÞe3

In particular, we put r ¼ xe1 þ ye2 þ ze3

� When necessary we will represent by �a the triple ða1;a2;a3Þ and by �x the triple ðx1;x2;x3Þ.
� We will use the two-sided Laplace transform (LT) of f ðx; y; zÞ defined on R3 and given by:
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