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a b s t r a c t

We construct and discuss a linearization method for solving Burgers equation with time-
dependent coefficients and a nonlinear forcing term. Our results are shown to contain
and generalize recent findings (Miskinis, 2001; Buyukasik and Pashaev, 2013). As applica-
tions of our method we solve several initial- and boundary-value problems for Burgers
equation with forcing of sinusoidal, polynomial, as well as X1-Laguerre exceptional orthog-
onal polynomial type.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Burgers equation is one of the most fundamental tools for describing nonlinear diffusion and dissipation phenomena. It
was derived from the Navier–Stokes equations by dropping the pressure term and was proposed as a model of turbulence in
hydrodynamic motion [4]. Since then Burgers equation has been found applicable to a wide variety of physical models, the
most important of which include standing waves and resonance in opto-acoustic systems [21], non-steady-state forced
vibrations in acoustic resonators [7], nonlinear standing waves in constant-cross-sectioned resonators [2], 1-D nonlinear
dynamics of hydrodynamic-type fields [22]. Further applications concern soil–water flow in layered media [3] [12], the for-
mation and propagation of soliton- and shock waves [23], acoustic streaming [10], population dynamics [17], and many
more. For a detailed overview of modern applications and related mathematical methods the reader may refer to [11] or
[25] and references therein. Due to the importance of Burgers equation, there is a general interest in particular cases, where
solutions can be expressed in closed form. Such solutions can be constructed by several methods, for example through Lie
symmetries [14], the Hirota method [18], the Backlund transformation [19], among others. In addition, one of the simplest
and most popular schemes to solve Burgers equation is to linearize it by means of the Cole–Hopf transformation [6] [13] to
an equation of Schrödinger type, including the heat equation as a particular case. This method of linearization has been used
extensively in order to generate closed-form solutions of Burgers equation, in particular for cases where an external force
field is included. Newer results on such cases include purely time-dependent [16] and linear forcing, see [8] and references
therein. Very recently, the latter setting was extended to Burgers equation for time-dependent coefficients [5]. It turned out
that linearizability to the heat equation persists if a certain interrelation between the coefficients in the equation holds. Now,
it is well-known that Burgers equation for a nonlinear forcing term can only be linearized to a Schrödinger-type equation for
a nonzero potential. Note that the expression ‘‘nonlinear’’ refers to the forcing term as being a nonlinear function in the spa-
tial variable. In some cases, the latter equation can be further simplified by transforming it into its stationary counterpart,
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which is an ordinary differential equation [9]. It is therefore desirable to have a transformation that takes Burgers equation
for time-dependent coefficients and nonlinear forcing term into a stationary Schrödinger equation. The construction of such
a mapping, the discussion of its properties, and the presentation of applications are precisely the purpose of this note. In Sec-
tion 2 we will introduce different point transformations for linearizing Burgers equation and relating it to its Schrödinger
counterpart. Section 3 is devoted to the construction of the final transformation and the discussion of its properties. Appli-
cations of our method that involve different initial-value- and boundary-value problems, are presented in Section 4. One of
these applications involves a forcing term expressed through exceptional orthogonal polynomials of X1-Laguerre type.

2. Point transformations

The method that will be constructed in Section 3 is based on point transformations that convert the time-dependent Bur-
gers equation to Schrödinger form. We particularly focus on the stationary Schrödinger equation, closed-form solutions of
which are comparably easy to find.

2.1. Stationary and time-dependent Schrödinger equations

We will now briefly review a point transformation that was first introduced in [9]. The purpose of this transformation is
to interrelate a class of time-dependent Schrödinger equations to certain stationary counterparts. We start out by consider-
ing the time-dependent Schrödinger equation

iUtðx; tÞ þ
1

2m
Uxxðx; tÞ � V1ðx; tÞUðx; tÞ ¼ 0; ð1Þ

where the indices stand for partial differentiation and m is a constant. Furthermore, V1 represents the potential, which we
assume to have the following form, introducing arbitrary differentiable functions A;B;C and a constant phase u:

V1ðx; tÞ ¼ exp
4
m

Z t

Aðt0Þdt0 þ 4u
m
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m
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m
AðtÞBðtÞ

� �
xþ CðtÞ: ð2Þ

The function V0 that appears in this expression is assumed to be differentiable and have an argument u of the following
form

uðx; tÞ ¼ exp
2
m

Z t

Aðt0Þdt0 þ 2u
m

� �
xþ 1

m

Z t

exp
2
m

Z t0
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" #
Bðt0Þdt0: ð3Þ

Let us now assume that the function W is a solution of the time-dependent Schrödinger equation for the stationary poten-
tial V0, that is,

iWtðx; tÞ þ
1

2m
Wxxðx; tÞ � V0ðxÞWðx; tÞ ¼ 0: ð4Þ

Define further the abbreviation

vðtÞ ¼
Z t

exp 4
Z t0 Aðt00Þ

m
dt00

" #
dt0;

then the function U, given by

Uðx; tÞ ¼ exp �iAðtÞx2 � iBðtÞxþ
Z t Aðt0Þ

m
� i

B2ðt0Þ
2m

� iCðt0Þ
" #

dt0
( )

W½uðx; tÞ; vðtÞ�; ð5Þ

provides a solution of the initial time-dependent Schrödinger equation (1) for the potential (2). In the particular case that W
is a solution to the stationary Schrödinger equation

1
2m

W00ðxÞ þ ½E� V0ðxÞ�WðxÞ ¼ 0 ð6Þ

for an arbitrary constant E, then

Uðx; tÞ ¼ exp �iAðtÞx2 � iBðtÞx� iE
Z t

exp
4
m

Z t0

Aðt00Þdt00
" #

dt0 þ
Z t Aðt0Þ

m
� i

B2ðt0Þ
2m

� iCðt0Þ
" #

dt0
( )

W½uðx; tÞ�; ð7Þ

solves our initial time-dependent Schrödinger equation (1) for the potential (2). Hence, if in the latter case a solution to the
stationary equation (6) is known, then a corresponding solution for the fully time-dependent system (1) and (2) can be con-
structed by means of (7).
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