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a b s t r a c t 

The paper deals with the development of the lower-upper symmetric Gauss–Seidel (LU-SGS) matrix-free 

finite volume solver for the simulation of compressible flows within the framework of the OpenFOAM 

package. The solver evaluates the convective fluxes using approximate Riemann solvers with limited 

piece-wise linear reconstructions whereas the viscous fluxes are approximated using a central scheme. 

The time evolution is realised through the backward differentiation formula of first or second order. The 

system of non-linear equations is then solved with the help of the matrix-free LU-SGS method. The devel- 

oped solver is used to solve several flow problems and compared to a pressure-based segregated solver. 

Our numerical experiments indicate that the LU-SGS solver is more efficient for flows with higher Mach 

numbers and provides better resolution of shock waves. Moreover the LU-SGS solver benefits from the 

low memory footprint and does not use any problem specific setup. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Computational Fluid Dynamics (CFD) is a fundamental tool for 

analysis and optimization of aerodynamic design. In the field of 

aeronautical engineering, turbomachinery or internal combustion 

engines, it is often possible to encounter high-speed flows with a 

significant compressibility effect. In these cases, non-linear phe- 

nomena such as shock waves with sudden changes in pressure, 

temperature, and velocity occur. These changes, based on the basic 

conservation laws, are tightly coupled. 

Great effort s have been made in the development of numerical 

methods for the solution of compressible flows at various Mach 

numbers. For the low Mach number or incompressible flows, the 

so-called pressurebased methods represent an efficient solution 

procedure. Especially the segregated Semi-Implicit Pressure Linked 

Equations (SIMPLE) method [1] or its variants are commonly used 

for this kind of flows. Although being originally developed for 

incompressible or weakly compressible flows, the later develop- 

ments [2–4] broadened the range of applicability of the pressure- 

based methods to high speed flows including transonic cases 

with shocks. Moreover, the development of coupled pressure-based 

methods [5,6] shows an important increase in the efficiency over 

the segregated approach at the cost of larger complexity of the 

code and larger memory requirements. 
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An alternative to the segregated pressure-based methods are 

the so-called coupled density-based solvers which use the concept 

of shock-capturing Godunov schemes using Riemann solvers, see 

e.g. [7] . This family of methods has been developed especially for 

convection dominated high speed flows and provides very robust 

schemes which are usually a preferred choice for transonic or hy- 

personic flows with shock waves, or flows with combustion. 

OpenFOAM [8] is the widely used open source framework for 

the numerical solution of partial differential equations using the 

finite volume method. The C++ based library contains several CFD 

modules targeted mostly to the pressure-based segregated solvers. 

So far, there is only one coupled density-based solver using the 

central-upwind scheme of Kurganov and Tadmor [9] (the so-called 

rhoCentralFoam ) in the standard OpenFOAM package. The FOAM- 

extend package (an extended fork of the OpenFOAM package) con- 

tains a specialized library developed originally under the name 

densityBasedTurbo by O. Born et al. [10] . The library provides a 

general framework for the development of coupled density-based 

solvers with several numerical fluxes including the Roe, the Ru- 

sanov, the HLLC, or the AUSM+up fluxes [7,11] . Moreover, the 

FOAM-extend package contains also a ready made solver called db- 

nsTurbFoam using this library. Unfortunately, both solvers, the rho- 

CentralFoam as well as the dbnsTurbFoam , use explicit methods for 

integration in time which leads to a strong stability limit on the 

time step and therefore both solvers become extremely inefficient 

in the case of flows at high Reynolds numbers with a mesh refine- 

ment in the vicinity of the wall. 
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The matrix-free lower-upper symmetric Gauss–Seidel (LU-SGS) 

scheme [12] is widely used because of its simplicity and very low 

memory requirements. The LU-SGS solver based on the OpenFOAM 

framework has been reported by Kim and Kim in [13] for the 

steady state case without giving enough details on the method. The 

article [14] describes the implementation of the LU-SGS scheme 

for inviscid compressible flows both for steady state and unsteady 

flows using the dual time stepping technique. In this article au- 

thors develop the scheme using the Steger-Warming flux splitting 

which needs the evaluation of the flux Jacobians and small matrix 

(5 by 5) operations. A similar method has been used also by Heyns 

et al. [15] . 

The current work is based on the description of the implemen- 

tation of LU-SGS scheme given in the paper [14] and replaces the 

evaluation of the flux Jacobian by the finite difference approxima- 

tion resulting in a true matrix-free method. Moreover, the method 

has been extended to the unsteady case assuming both the rotat- 

ing reference frame or the arbitrary Lagrangian–Eulerian method. 

2. The numerical method 

The motion of a compressible gas is described by the following 

system of equations expressing conservation of mass, momentum, 

and energy 

∂ρ

∂t 
+ ∇ · (ρU ) = 0 , 

∂(ρU ) 

∂t 
+ ∇ · (ρU � U ) + ∇p = ∇ · τ, 

∂(ρE) 

∂t 
+ ∇ · [ (ρE + p) U ] = ∇ · (τ · U ) + ∇ · (k ∇T ) , 

where ρ is the density, U is the velocity vector, p is the pressure, 

τ is the (effective) stress tensor, E is the specific total energy, k is 

the (effective) thermal conductivity, and T is the temperature. The 

system is closed by the equation of state for ideal gas p/ρ = rT 

where r is the specific gas constant. 

Spatial derivatives at the left hand side of the previous equa- 

tions represent inviscid terms whereas the right hand side repre- 

sents viscous terms. The above equations can be expressed in the 

integral form suitable for the finite volume approximation as fol- 

lows (assuming a fixed control volume � at first) 

d 

dt 

∫ 
�

W dV + 

∮ 
∂�

(F − F 

v ) · dS = 0 , (1) 

where W = [ ρ, ρU , ρE] is the vector of conservative variables and 

F and F 

v represent inviscid and viscous fluxes. 

The integral form of the system Eq. (1) is discretized in space 

using the collocated finite volume method (FVM) by taking 

W i (t) = 

1 

| �i | 
∫ ∫ ∫ 

�i 

W (x , t) dV, 

where �i is the mesh cell i . Hence Eq. (1) can be approximated as 

| �i | dW i 

dt 
= −R (W ) i = −

∑ 

j∈ N i 
(F i j − F 

v 
i j ) · S i j , (2) 

where N i is the set of indices of neighbor cells, S i j = || S i j || n i j is 

the scaled normal vector to the face shared between cells i and j 

oriented towards to cell j and F i j and F 

v 
i j 

are the numerical fluxes. 

The viscous fluxes F 

v 
i j 

in 2 are discretized directly with the Open- 

FOAM built-in schemes (e.g. central scheme) and the discretization 

of inviscid fluxes F i j is made using limited piece-wise linear recon- 

structions with the AUSM+up [11] or HLLC numerical fluxes [7] . 

2.1. The LU-SGS scheme for steady flows 

In the case of steady state problem, the above devised system 

of non-linear ordinary differential equations can be solved using 

a local pseudo-time marching method. The time derivative is re- 

placed by the first order backward difference using the local value 

of the time step 

| �i | W 

n +1 
i 

− W 

n 
i 

�t i 
= −R (W 

n +1 ) i ≈ −R (W 

n ) i 

−
∑ 

j 

∂R (W 

n ) i 
∂W j 

(
W 

n +1 
j 

− W 

n 
j 

)
, 

or denoting by �W 

n = W 

n +1 − W 

n 

∑ 

j 

( | �i | 
�t i 

I + 

∂R (W 

n ) i 
∂W j 

)
�W 

n 
j = −R (W 

n ) i . (3) 

This type of the implicit method was used successfully by many 

authors, see e.g. [12] or [16] in combination with standard linear 

equation solvers such as GMRES [17] . The main disadvantage of the 

straightforward approach is that one has to assemble the Jacobian 

matrix ∂ R / ∂ W , which needs quite a huge amount of the memory. 

Together with the demands of the linear solver, the memory re- 

quirements can grow up to 50 − 100 times the size of the array of 

unknowns. Such large memory requirements could be prohibitive 

and therefore we use the simple matrix-free lower-upper symmet- 

ric Gauss–Seidel method (LU-SGS) despite its lower performance in 

comparison with e.g. GMRES or multigrid methods. 

In the first step, the Jacobian matrix ∂ R / ∂ W is replaced by its 

lower order approximation calculated using thin-layer approxima- 

tion for viscous terms and the first order approximation of convec- 

tive terms with Rusanov flux 

F i j · S i j ≈
1 

2 

(
F (W i ) + F (W j ) 

)
· S i j −

λi j 

2 

(
W j − W i 

)
, 

where λij is the spectral radius of Jacobian of F · S , i.e. λi j = | u i j ·
S i j | + a i j || S i j || with u ij being the velocity at the face between the 

cells i and j and a ij is the sound speed. Thanks to the simplicity of 

the Rusanov flux the low order residual reduces to 

R (W ) lo i = 

1 

2 

∑ 

j∈ N i 
λ∗

i j W i + 

1 

2 

∑ 

j∈ N i 

(
F (W j ) · S i j − λ∗

i j W j 

)
where λ∗ includes both the spectral radii of Jacobians of convective 

terms and the thin-layer approximation of viscous terms, hence 

λ∗
i j = λi j + 

|| S i j || 
|| x i − x j || max 

(
4 

3 ρi j 

, 
γ

ρi j 

)(
μ

P r 
+ 

μT 

P r T 

)
, 

where x i and x j are the position vectors of centers of cells i and j, 

ρ ij is the density at the face between cells i and j, γ is the ratio 

of specific heats, μ and μT are the molecular and turbulent vis- 

cosities, Pr is the Prandtl number, and Pr T is the turbulent Prandtl 

number, see [12] . Finally the product of Jacobians with �W is ap- 

proximated with finite differences and the system of equations is 

solved with the LU-SGS method. 

Let L and U denote the sets of cells belonging to lower and up- 

per part of the matrix: 

L i = { j ∈ N i : j < i } , 
U i = { j ∈ N i : j > i } . 
Then the matrix-free LU-SGS scheme can be written using the fol- 

lowing two step procedure: 

D i �W 

(1) 
i 

= −R i −
1 

2 

∑ 

j∈ L i 

[
�F 

(1) 
j 

· S i j − λ∗
i j �W 

(1) 
j 

]
, (4) 
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