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a b s t r a c t 

We present a numerical model for the simulation of 3D poly-dispersed sediment transport in a Newto- 

nian flow with free surfaces. The physical model is based on a mixture model for multiphase flows. The 

Navier–Stokes equations are coupled with the transport and deposition of the particle concentrations, 

and a volume-of-fluid approach to track the free surface between water and air. The numerical algorithm 

relies on operator-splitting to decouple advection and diffusion phenomena. Two grids are used, based on 

unstructured finite elements for diffusion and an appropriate combination of the characteristics method 

with Godunov’s method for advection on a structured grid. The numerical model is validated through 

numerical experiments. Simulation results are compared with experimental results in various situations 

for mono-disperse and bi-disperse sediments, and the calibration of the model is performed using, in 

particular, erosion experiments. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The modeling of sediment transport in rivers, lakes or shores 

is particularly relevant in hydraulic engineering to determine the 

amount and location of granular matters in the liquid. Sediments 

have indeed an influence on structural damages, operations effi- 

ciency and management, but also influence the efficiency of energy 

production in dam retention lakes. Moreover, the accumulation of 

river sediments in certain areas of the rivers modifies the natural 

environment, which might have important consequences for hy- 

draulic energy production [1] or environmental regulations. 

The modeling of sediment transport in a flow classically relies 

on a multiphase model. Two-phase flow models [2–4] use a second 

liquid field for the dilute sediment phase, with a different momen- 

tum equation in addition to that of the first liquid field, and possi- 

bly with a different rheology. The other alternatives are to macro- 

scopically model the sediment concentration by an additional con- 
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centration field [5,6] , which is well-validated at low concentration 

levels, or via the modeling of individual sediment particles at the 

microscopic level [7,8] . 

We focus here on sediments in suspension or accumulated in 

a Newtonian fluid (typically water). We investigate a macroscopic 

model for the sediment transport based on a sediment concentra- 

tion with a single momentum balance for the mixture. The dilute 

concentration of sediments oscillates between zero and a maximal 

concentration corresponding to consolidated sediments. 

The model proposed here couples the Navier–Stokes equations, 

with a volume-of-fluid approach for the tracking of the free sur- 

faces between water and air, plus a nonlinear advection equation 

for the sediments’ migration from low to high concentration ar- 

eas. Since both dilute and undilute sediment concentrations in the 

liquid need to be described, a model able to describe not only 

the two phases but also the migration of the sediments from high 

to low concentration areas, and the resulting density variations, is 

chosen. This requires a miscible model , by opposition with, e.g., im- 

miscible multiphase flow model [9] . As opposed to [9] , here the 

advection equation for the tracers is nonlinear and concentrations 

vary along the Lagrangian trajectories. 
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Fig. 1. Dam retention lake including sediment transport and deposition. 2D sketch 

of the geometrical domain.The cavity � is highlighted in bold. At each time t ∈ (0, 

T ), the liquid domain �t is separated from the ambient air by the water-air inter- 

face �t . The water domain is described by its characteristic function ϕ, while the 

sediment concentration fs is bounded in the liquid by its maximal value fs CR . 

A mathematical model for the simulation of Newtonian fluids 

with free surfaces, without sediment transport, has been presented 

and validated in [10–13] , and has been applied to hydraulic engi- 

neering situations in [14] . It is extended here to include sediment 

transport. The addition of sediments has a direct effect on the den- 

sity and viscosity of the flow. Reciprocally, the velocity of the flow 

is used to transport the sediment concentration, in addition to de- 

position effects due to the gravity. 

An operator splitting approach allows to decouple the diffusion 

operator, the advection operator (by the mixture velocity) and the 

nonlinear transport operator for sediment deposition. A two-grids 

method couples a finite element discretization for the solution of 

a Stokes problem, with a finer structured grid of small cells for 

the discretization of advection operators and sediment deposition. 

While finite elements techniques are used for the approximation 

of the Stokes problem, a characteristics method and a Godunov 

method are used for the approximation of the linear and nonlin- 

ear transport problems respectively. Several numerical experiments 

validate the mathematical model presented in this work, starting 

with benchmark situations in simple geometries to real experi- 

ments for erosion problems, in which computational results are 

benchmarked against experimental results. Mono- and bi-disperse 

sediments are considered, and sensitivity analyses are performed. 

The novelty of the proposed approach lies in the choice of a 

dedicated numerical method proposed to solve this multiphysics 

model, which couples sediment transport and free surfaces. The 

advocated splitting algorithm efficiently decouples the various 

physical phenomena and addresses each of them with dedicated 

techniques, involving finite elements, finite volumes and character- 

istics methods. Furthermore, there is no explicit tracking of the in- 

terfaces. The free surface between water and air is modeled by an 

Eulerian (volume-of-fluid) approach, while a diffuse interface mod- 

eling is used for the interface between water and the sediments. 

This article is structured as follows. In Section 2 , we describe 

the mathematical model for coupling the evolution of a Newtonian 

fluid with free surfaces with sediment transport. Sections 3 and 

4 detail respectively the time and space discretizations. The results 

of numerical experiments for various test cases are presented in 

Section 5 . 

2. Mathematical model 

Let us consider � a bounded domain in R 

3 with a sufficiently 

smooth boundary. Typically, we can consider a water reservoir or a 

dam retention lake, a sketch of which is illustrated in Fig. 1 in two 

space dimensions. 

Let T > 0 be the final time of simulation. For any given time 

t ∈ (0, T ), let �t ⊂� be the domain occupied by the fluid (mixture 

including sediments), so that the remaining part of the domain 

� is occupied by the ambient air. Let �t be the free surface be- 

tween the liquid and the ambient air; it is defined by �t := ∂ �t \ ∂ �
(namely the boundary of the liquid domain that is not in contact 

with the boundary of the whole cavity). 

The mathematical model reads as follows. First let us de- 

scribe the set of unknowns. Let Q T denote the space-time domain 

containing the liquid, that is Q T = { (x , t) : x ∈ �t , 0 < t < T } . 
The liquid domain is described by its characteristic func- 

tion ϕ: �× (0, T ) → {0, 1}, which implies that Q T = 

{ (x , t) ∈ � × (0 , T ) : ϕ(x , t) = 1 } . Assuming that the liquid do- 

main Q T is known and sufficiently regular, in the liquid region, 

the velocity field v : Q T → R 

3 and the pressure field p : Q T → R 

are assumed to satisfy time-dependent, incompressible Navier–

Stokes equations, with variable density and viscosity coefficients, 

and an additional Darcy-like reaction term modeling the porous 

solid matrix [15,16] . Finally, for the various classes of sediments, 

the sediment concentrations are defined in the liquid domain 

as fs i : Q T → [0 , fs CR ] , where fs CR is the maximal sediment con- 

centration. The set of corresponding equations read as follows. 

The evolution of the mixture (water and sediments) domain 

�t ⊂� is modeled by means of a volume-of-fluid method. Let 

ϕ : � × (0 , T ) → R be the characteristic function of the liquid do- 

main Q T . The function ϕ equals one at the point ( x , t ) if the liquid 

is present, zero if it is not. In order to describe the kinematics of 

the free surface, ϕ must satisfy (in a weak sense): 

∂ϕ 

∂t 
+ v · ∇ϕ = 0 in � × (0 , T ) , (2.1) 

where v outside Q T is a regular extension of v inside Q T (see, e.g. , 

[17] ). More precisely, v (X (t ) , t ) = v (X (0) , 0) , where X ( t ) is the tra- 

jectory of a fluid particle which is at position X (0) at time t = 0 , 

thus X 

′ (t) = v (X (t ) , t ) . 

The characteristic function of the liquid domain ϕ is given at 

initial time, which is equivalent to defining the initial liquid region 

�0 = { x ∈ � : ϕ(x , 0) = 1 } . The initial velocity field v is prescribed 

in �0 (see below), and boundary conditions are given on the inlet 

part of ∂�. 

Together, we consider a poly-dispersed model for the miscible 

sediment in the liquid. Assuming M populations of sediments (dif- 

fering by size and/or density and/or shape), the presence rate of 

a sediment population is denoted by the solid fractions fs i : Q T → 

[0 , 1] for i = 1 , . . . , M. This presence rate is a percentage of solid 

sediment in a given volume. The total amount of sediment 

fs = 

M ∑ 

i =1 

fs i 

is actually limited by a critical maximum value fs CR < 1 that essen- 

tially depends on the shape of the sediment particles. In practise, 

if we consider a mono-disperse model with solid spherical parti- 

cles and without consolidation, this value is approximately equal 

to 0.63. 

We assume the liquid mixture velocity and pressure v : Q T → 

R 

3 and p : Q T → R satisfy, in Q T : 

ρ( f s ) 
∂v 

∂t 
+ ρ( f s )(v · ∇) v − 2 ∇ · ( μ( fs ) D (v ) ) 

+ α( f s ) v + ∇p = ρ( f s ) g , (2.2) 

∇ · v = 0 . (2.3) 

Here D (v ) = 1 / 2(∇v + ∇v T ) is the symmetric deformation tensor, 

g denotes the gravity field, and ρ( f s ) (resp. μ( f s ) ) is the density 

(resp. viscosity) of the fluid-sediment mixture. The coefficient α( f s ) 

is a Darcy-like penalization term. All physical coefficients depend 

on the sediment concentrations fs i , i = 1 , . . . , M. More precisely, 
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