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a b s t r a c t 

The biotransport of the intravascular nanoparticle (NP) is influenced by both the complex cellular flow 

environment and the NP characteristics. Being able to computationally simulate such intricate transport 

phenomenon with high efficiency is of far-reaching significance to the development of nanotherapeutics, 

yet challenging due to large length-scale discrepancies between NP and red blood cell (RBC) as well as 

the complexity of nanoscale particle dynamics. Recently, a lattice-Boltzmann (LB) based multiscale simu- 

lation method has been developed to capture both NP–scale and cell–level transport phenomenon at high 

efficiency. The basic components of this method include the LB treatment for the fluid phase, a spectrin- 

link method for RBCs, and a Langevin dynamics (LD) approach to capturing the motion of the suspended 

NPs. Comprehensive two-way coupling schemes are established to capture accurate interactions between 

each component. The accuracy and robustness of the LB–LD coupling method are demonstrated through 

the relaxation of a single NP with initial momentum and self-diffusion of NPs. This approach is then 

applied to study the migration of NPs in micro-vessels under physiological conditions. It is shown that 

Brownian motion is most significant for the NP distribution in 20 μm venules. For 1 ∼ 100 nm particles, 

the Brownian diffusion is the dominant radial diffusive mechanism compared to the RBC-enhanced diffu- 

sion. For ∼ 500 nm particles, the Brownian diffusion and RBC-enhanced diffusion are comparable drivers 

for the particle radial diffusion process. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Analysis of whole blood flow has been demonstrated through 

direct numerical simulation (DNS) of the major constituents of 

blood including the plasma, red blood cells (RBCs) ( ∼45%), and 

other cells ( ∼0.7%) such as white blood cells (WBCs) and platelets 

[1-5] . Both single RBC dynamics [1,3,6] and rheological properties 

of dense suspensions of RBCs [7-10] have been computationally re- 

solved, showing promising agreements with experimental results. 

Particularly, the lattice-Boltzmann (LB) method for the fluid phase 

coupled with the Spectrin-Link (SL) analysis of the RBC membrane 

as a hybrid mesoscopic method (LB–SL) has shown to be both effi- 

cient and accurate [3] . 

Owing to the success of DNS for whole blood, the mechanisms 

of migration and margination of microscale particles in blood flow 

have been understood to a considerable extent. In the study of 

hemostasis and platelet-rich thrombi formation, the mechanism of 

platelet margination has been investigated and shown its depen- 

dence on hemodynamics and cell properties [11-13] . For micro- 

sized particles of high rigidity (such as platelets, WBCs and stiff- 
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ened RBCs under pathological conditions) suspended in non-dilute 

RBC suspensions, the propensity of particle margination is found to 

be mainly driven by the RBC-enhanced diffusion in the RBC-laden 

region as well as the sink-like effect of the RBC-depleted layer [14- 

16] . Based on these complex margination mechanisms, a contin- 

uum model has been proposed to bridge the DNS capability with 

the patient-specific applications [17] . 

In contrast, analysis of the transport of NPs in cellular blood 

flow remains challenging due to the large length-scale discrep- 

ancy between NPs ∼ O(10 nm) and RBCs ∼ O( 10 μm ) , as shown 

in Fig. 1 . Moreover, further complexities come from the intricate 

NP dynamics, which highly depend on the particle Brownian effect, 

inter-particle hydrodynamic interactions (HI) mediated through the 

fluid, and particle–RBC interactions. Because of the rapid develop- 

ment of the nanotherapeutics field, more attention has been drawn 

to understand the NP transport in blood vessels. 

To study the influence of RBCs on NP transport in microcircu- 

lation, Tan et al. [18] apply a simplified Brownian dynamics ap- 

proach for NPs and an immersed finite-element (FE) method for 

both RBC deformation and fluid flow, showing substantial margina- 

tion behavior for 100 nm particles. Although the Brownian effect is 

included in the method, particles are only treated as passive trac- 

ers without including the effect of HI. It is shown that HI has a 
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Fig. 1. NPs (yellow dots) transport in a cellular blood vessel with various consti- 

tutive components of large length-scale discrepancies. RBC (red) is about 8 μm ; 

platelet (white) is 2 − 3 μm ; the monomers of certain proteins, e.g. Von Willebrand 

factors (VWFs), can be as small as ∼60 nm; and NPs are generally in the range of 

0 − 500 nm . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.). 

significant effect on the microstructure and rheological properties 

of colloidal/non-colloidal suspensions [19,20] . A similar hydrody- 

namic approach is applied by Lee et al. [21] with all constituents 

(including NPs) resolved directly using FE grids. In their simulation, 

a dispersion factor defined as the ratio between the calculated ra- 

dial diffusivity and theoretical Brownian diffusivity is introduced 

to quantify the severity of particle margination, which falls short 

of describing the actual total diffusivity of the particle. A rather in- 

significant NP margination is observed in their study, which is con- 

tradictory to the margination behaviors observed by Tan et al. [18] . 

Viewing the inefficiency of the current three-dimensional whole 

blood flow solvers, Tan et al. [22] apply two-dimensional simu- 

lations to obtain parametric behaviors of NP transport in cellu- 

lar blood flow, which provides limited understanding on the ac- 

tual three-dimensional NP migration behaviors; although some ef- 

forts have been made by Muller et al. [23] to try to connect 

the two-dimensional particle margination behavior with the three- 

dimensional counterparts. 

One explanation for the above contradictory prediction of NP 

distribution in vessels may be overlooking the Brownian effect on 

the NP dynamics, given none of the studies above have provided 

solid verification or detailed analysis of the NP Brownian motion. 

However, the effect of thermal fluctuation on NPs suspended in 

blood is fundamentally important. For example, NP of diameter 

50 − 100 nm suspended in a 20 μm vessel under typical wall shear 

rate ˙ γw 

= 500 s −1 yields a Péclet number, Pe = 3 πμ ˙ γw 

d 3 
P 
/ ( 4 k B T ) , 

in the range of 0 . 04 − 0 . 3 , indicating the significance of NP Brow- 

nian effect. Therefore, it is paramount to correctly resolve the NP 

Brownian motion in order to predict the accurate NP biodistribu- 

tion in cellular vessels. 

Given the multiscale nature of NP transport in cellular blood 

flow, hybrid approaches that combine NP dynamics and mesoscale 

hydrodynamic approach may be the key to realize accessible three- 

dimensional parametric studies with large variable space. Ahlrichs 

and Dünweg [24] couples a fluctuating LB method [25] with a 

Molecular dynamics (MD) approach for point particles through a 

friction term, exhibiting promising efficacy in dealing with solvent- 

polymer systems. Compared with the typical Brownian dynamics 

approach that addresses HI by dealing with an expensive mobil- 

ity matrix, this hybrid LB–MD approach scales linearly with the 

number of particles; however, it requires an empirical rescaling 

of the prescribed friction coefficient to produce the theoretical 

Brownian diffusivity. Recently, Mynam et al. [26] showed that the 

empirical modification of the friction coefficient is due to extra 

mobility introduced by the fluctuating LB method. By removing 

the fluctuation in the fluid phase, a particle Brownian diffusiv- 

ity is correctly determined without any artificial rescaling. Previ- 

ous hybrid approaches for particle–solvent systems [24,26-28] re- 

quire sub-iterations to maintain numerical stability while solving 

the Langevin equation (LE) coupled with the LB method, reducing 

overall computational efficiency. 

Here, an efficient three-dimensional multiscale LB–LD approach 

for the NP-solvent system coupled with the well-established LB–

SL method for RBC suspension [3] is proposed to fully resolve the 

NP transport in cellular blood flow. Two-way coupling between the 

NP and fluid phase is achieved by introducing an LB forcing source 

term [29] to account for the momentum exchange between the LB 

and LD system. The framework of this multiscale computational 

approach is depicted in Fig. 2 , where all modules in different scales 

are included. The entire system is advanced in LB time scale with- 

out the necessity of introducing sub-time steps. 

In Section 2 , the basic elements of this computational ap- 

proach are presented, namely the LB method for the fluid phase, 

the coarse-grained SL method to capture the RBC membrane dy- 

namics, the LD approach for NPs, and the comprehensive two- 

way coupling schemes that bridge the entire computational frame- 

work. In Section 3 , the accuracy and robustness of this approach 

are demonstrated through multiple benchmark cases. Then in 

Section 4 , this approach is applied to study the NP migration 

in a micro–vessel with a physiological concentration of RBCs. In 

Section 5 , this work is concluded with some remarks and an out- 

look to the future work. 

2. Methodology 

2.1. Lattice-Boltzmann method 

The method used to solve for the fluid-phase is based on the 

three-dimensional LB method developed by Aidun et al. [2,30,31] . 

The LB method relies on propagating the fluid particles with dis- 

crete velocities, e i , resulting in the formation of a lattice space. A 

collision step relaxes the particle distribution function (PDF), f i , to- 

ward a local equilibrium PDF, f 
( eq ) 
i 

, causing a diffusion of momen- 

tum. With the collision term linearized by the single-relaxation- 

time Bhatnagar, Gross, and Krook (BGK) operator [34] , the time 

evolution of the PDF takes the form of 

f i ( r + �t LB e i , t + �t LB ) 

= f i ( r, t ) − 1 

τ

[
f i ( r, t ) − f ( 

eq ) 
i ( r, t ) 

]
+ f S i ( r, t ) , (1) 

where τ is the normalized single relaxation time, and f S 
i 

is a forc- 

ing source PDF based on the method of He et al. [29] to account for 

the external force effect. This method has a pseudo-sound-speed of 

c s = 

�r LB √ 

3 �t LB 
, and a kinematic viscosity of νLB = ( τ − 1 

2 ) c 
2 
s �t LB [35] , 

where the LB time step, �t LB , and lattice unit distance, �r LB , are 

set equal to 1. At low Mach number, i.e., small u 
c s 

, the LB equation 

recovers the incompressible Navier-Stokes equation [36] with the 

equilibrium PDF determined by local macroscopic variables as 

f ( 
eq ) 

i ( r, t ) = ω i ρLB 

[
1 + 

1 

c 2 s 

( e i · u ) + 

1 

2 c 4 s 

( e i · u ) 
2 − 1 

2 c 2 s 

( u · u ) 

]
, 

(2) 

where ρLB and u are the macroscopic fluid density and velocity 

given by moments of the equilibrium distribution functions, i.e., 

ρLB = 

∑ 

N 

i =1 f 
( eq ) 
i 

and u = 

1 
ρLB 

∑ 

N 

i =1 f 
( eq ) 
i 

e i . The lattice weights, ω i , 

are determined by the LB stencil in use. For the D3Q19 stencil used 

in this study, N is equal to 19, and ω i is 1/3, 1/18, and 1/36 for the 

rest, nondiagonal, and diagonal directions, respectively [2] . The LB 

method is extensively validated [31,37,38] and proved to be suit- 

able for DNS of dense suspension of particles and capsules [2,4] . 
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