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a b s t r a c t 

In this work, we improve the accuracy and stability of the lattice Boltzmann model for the Kuramoto–

Sivashinsky equation proposed in [1]. This improvement is achieved by controlling the relaxation time, 

modifying the equilibrium state, and employing more and higher lattice speeds, in a manner suggested 

by our analysis of the Taylor-series expansion method. The model’s enhanced stability enables us to 

use larger time increments, thereby more than compensating for the extra computation required by the 

high lattice speeds. Furthermore, even though the time increments are larger than those of the previous 

scheme, the same level of accuracy is maintained because of the smaller truncation error of the new 

scheme. As a result, total performance with the new scheme on the D1Q7 lattice is improved by 92% 

compared to the original scheme on the D1Q5 lattice. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Kuramoto–Sivashinsky (KS) equation is well known to re- 

produce a variety of chaotic phenomena caused by intrinsic insta- 

bility such as the unstable behavior of laminar flame fronts [2,3] , 

thin-water-film flow on a vertical wall [4] , and persistent wave 

propagation through a reaction-diffusion system [5] . For space X 

and time T , the KS equation for a quantity ρ is 

∂ T ρ + ρ∂ X ρ = −∂ 2 X ρ − ∂ 4 X ρ. (1) 

The second term on the left-hand side is the nonlinear advection 

term, while the first and second terms on the right-hand side are 

the production and hyperdiffusion terms, respectively. Examining 

the relationship between those terms, Holmes [6] found that the 

KS equation exhibits basic properties of turbulent flow, and indeed 

corresponds to the equation for the fluctuating velocity derived 

from the Navier–Stokes equation. Accordingly, the KS equation is 

often used to explore basic features of chaotic systems. 

The lattice Boltzmann (LB) method was originally developed 

from models of lattice-gas cellular automata, and is based on prin- 

ciples of kinetic theory [7–9] . The ensemble of particle states is 

described by a distribution function which evolves through the 

particles’ advection and collision process, thereby establishing the 
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hydrodynamics. In addition to the hydrodynamic degrees of free- 

dom, the model’s kinetic modes depend on higher moments of 

the distribution function and give rise to peculiar features of the 

LB method, which are also beneficial for more detailed numerical 

modeling. 

In the last decade, a number of LB models for nonlinear spa- 

tiotemporal systems have been developed [1,10–15] . In a previous 

study [1] , LB models for nonlinear equations, such as the Burg- 

ers’, Korteweg-de Vries, and Kuramoto–Sivashinsky (KS) equations, 

were derived using both the Chapman–Enskog and Taylor-series 

expansion methods [16,17] consistently. For simulating the long- 

time behavior of these chaotic equations accurately, however, the 

LB models thus derived require substantial computational time. 

Moreover, whereas the relaxation time τ in the LB model for the 

Navier–Stokes equation has a clear relationship to the viscosity, the 

role and optimized value of τ for the KS equation is not at all clear, 

and its value had to be set by trial and error. In this work, reme- 

dies for both of these issues are investigated using the Taylor-series 

expansion method, which allows for easy analysis of higher-order 

effects in the hydrodynamic equations. 

This paper is organized as follows: In Section 2 , we present a 

way to improve the LB model for the KS equation. In Section 3 , we 

test the LB model thereby derived by comparisons with analytic 

solutions and with the previous model. In Section 4 , we summarize 

the results of this study and present conclusions. 

https://doi.org/10.1016/j.compfluid.2018.01.036 

0045-7930/© 2018 Elsevier Ltd. All rights reserved. 

Please cite this article as: H. Otomo et al., Efficient lattice Boltzmann models for the Kuramoto–Sivashinsky equation, Computers and 

Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.01.036 

https://doi.org/10.1016/j.compfluid.2018.01.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
mailto:hiroshi.otomo@tufts.edu
https://doi.org/10.1016/j.compfluid.2018.01.036
https://doi.org/10.1016/j.compfluid.2018.01.036


2 H. Otomo et al. / Computers and Fluids 0 0 0 (2018) 1–6 

ARTICLE IN PRESS 

JID: CAF [m5G; February 2, 2018;20:35 ] 

Table 1 

Moments of w i . 

Order of moments w 

(0) 
i 

w 

(1) 
i 

w 

(2) 
i 

w 

(4) 
i 

0 1 0 0 0 

1 0 1 0 0 

2 0 0 1 0 

3 0 0 0 0 

4 0 0 0 1 

Table 2 

Coefficients of moments. 

J : β/2 α

K: −2 β( T 1 + 1 ) / 
{
α2 ( T 2 + 1 ) 

}
M : −24 β( T 1 + 1 ) / 

{
α4 ( T 4 + 1 ) 

}

2. Improved lattice Boltzmann models for the 

Kuramoto–Sivashinsky equation 

With discrete lattice velocities c i and the relaxation time τ , the 

LB equation for the discrete distribution function f i is given by: 

f i ( x + c i �t, t + �t ) − f i ( x, t ) = − f i − f eq 
i 

τ
. (2) 

Here f 
eq 
i 

is the local equilibrium state whose form for the KS equa- 

tion, Eq. (1) , was found in prior work [1] to be 

f eq 
i 

= ρ
(
w 

(0) 
i 

+ Kw 

(2) 
i 

+ M w 

(4) 
i 

)
+ ρ2 J w 

(1) 
i 

, (3) 

where ρ = 

∑ 

i f i and where the weights w i have moments shown 

in Table 1 . Explicit forms for these weights are presented in 

Appendix A . The quantities K, M , and J are given in Table 2 , 

where we have defined T i = 

∑ ∞ 

n =1 

(
1 − 1 

τ

)n [
( n + 1 ) i − n i 

]
. For 

τ > 1/2 these are 

T 1 = τ − 1 

T 2 = 2 τ 2 − τ − 1 

T 3 = 6 τ 3 − 6 τ 2 + τ − 1 

T 4 = ( τ − 1 ) 
(
24 τ 3 − 12 τ 2 + 2 τ + 1 

)
. (4) 

The characteristic lattice speed | c |, which is dimensioned in lattice 

units, is assumed to be one and not explicitly written in what fol- 

lows. 

We use the Taylor-series expansion method for a small non- 

dimensional parameter ε, with the scaling assumptions �x/L = ε
and �t/T = εm for m > 1, and we assume that L ∂ x and T ∂ t are or- 

der unity, where L and T are macroscopic length and time scales. 

By summing over i in Eq. (2) , one obtains [1] , 

∂ρ

∂t 
= −J 

∂ρ2 

∂x 
+ 

�t 

2! 
K 

∂ 2 ρ

∂x 2 
T 2 + 1 

T 1 + 1 

+ 

( �t ) 
3 

4! 
M 

∂ 4 ρ

∂x 4 
T 4 + 1 

T 1 + 1 

+ O 

(
∂ 5 ρ

∂x 5 
, 
∂ 2 ρ2 

∂ x∂ t 
, 
∂ 2 ρ

∂t 2 

)
. (5) 

The last term on the right-hand side is regarded as the truncation 

error for the KS equation. 

In a simulation, the physical space X and physical time T are 

scaled with parameters α and β from the corresponding coordi- 

nates in lattice units, x and t , as follows 

X = αx 

T = βt. (6) 

The increments of physical space and time are therefore �X = α
and �T = β . Taking this into account, it is straightforward to see 

that Eq. (1) can be derived from Eq. (5) with the choices of J , K
and M given in Table 2 . 

2.1. Strategy 

It is worth highlighting several features of the above formalism: 

• The requirements for the weights set forth in Table 1 can be 

satisfied with at least 5 lattice speeds, so D1Q5 would work. 
• Higher moments than those shown in Table 1 impact only the 

truncation error in Eq. (5) . 
• As long as K, M , and J are as given in Table 2 , the relaxation 

time does not influence the leading order terms in Eq. (5) , but 

only the truncation error. 

Due to the first point above, we adopt the D1Q5 lattice in 

this paper as our “basic scheme.” Due to the second and third 

points, we see that by using more lattice speeds than the basic 

scheme and by varying the relaxation time, we may enhance ac- 

curacy while retaining stability. Although the increased number of 

speeds will require additional computation, if the time increments 

for achieving the same accuracy can be increased significantly, the 

total computational cost will be improved. 

2.2. Analysis 

According to our basic scheme, the leading truncation error 

term at order β0 of Eq. (5) is the sixth spatial derivative term 

whose coefficients involve K and M . By straightforward algebra, 

we find that this error term is {
α4 ( T 6 + 1 ) 

90 ( T 2 + 1 ) 
− α2 ( T 6 + 1 ) 

6 ( T 4 + 1 ) 

}
∂ 6 ρ

∂X 

6 
, (7) 

where we have substituted the forms of K and M from Table 2 . 

Similarly, the truncation error terms at order β of Eq. (5) are those 

involving ∂ 2 ρ/ ∂ t 2 , ∂ 3 ρ/ ∂ t ∂ x 2 , and ∂ 5 ρ/ ∂ t ∂ x 4 , whose coefficients 

also involve K and M . By utilizing the leading order result, Eq. (1) , 

these explicit forms are derived as 

β

{
T 2 + 1 

2 ( T 1 + 1 ) 
− T 3 + 1 

T 2 + 1 

}
∂ 4 ρ

∂X 

4 

+ β
{ T 2 + 1 

T 1 + 1 

− T 3 + 1 

T 2 + 1 

− T 5 + 1 

T 4 + 1 

} 

∂ 6 ρ

∂X 

6 
. (8) 

In the derivation process of Eqs. (7) and (8) , advection terms, 

namely those terms including ρ2 , are not taken into account for 

the sake of simplicity. 

In order to remove the second term in Eq. (7) for the D1Q7 

lattice, the following δ f 
eq 
i 

is added to f 
eq 
i 

of Eq. (3) , 

δ f eq 
i 

= 

120 ( T 1 + 1 ) β

( T 4 + 1 ) α4 
ρw 

(6) 
i 

, (9) 

where w 

(6) 
i 

is defined in Eq. (A.5) . 

In similar fashion, to remove the fourth derivative term in 

Eq. (8) , the following δM is added to M in Table 2 , 

δM = −24 β2 ( T 1 + 1 ) 

α4 ( T 4 + 1 ) 

(
T 2 + 1 

2 ( T 1 + 1 ) 
− T 3 + 1 

T 4 + 1 

)
. (10) 

The remaining error terms in Eqs. (7) and (8) are then {
α4 ( T 6 + 1 ) 

90 ( T 2 + 1 ) 
+ β

(T 2 + 1 

T 1 + 1 

− T 3 + 1 

T 2 + 1 

− T 5 + 1 

T 4 + 1 

)}
∂ 6 ρ

∂X 

6 
. (11) 

If this coefficient of the sixth derivative is positive, the system is 

very likely to be stable since the coefficient of the fourth derivative 

is negative. For τ = 1 , this condition can be written as 

α4 

90 

≥ β. (12) 

Thus, when β is not sufficiently small, an instability occurs. When 

τ is increased, however, this condition on β is weakened, since the 
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