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a b s t r a c t 

Capillary phenomena are involved in many industrial processes, especially those dealing with composite 

manufacturing. However, their modelling is still challenging. Therefore, a finite element setting is pro- 

posed to better investigate this complex issue. The variational formulation of a liquid–air Stokes’ sys- 

tem is established, while the solid substrate is described through boundary conditions. Expressing the 

weak form of Laplace’s law over liquid–air, liquid–solid and air–solid interfaces, leads to a natural en- 

forcement of the mechanical equilibrium over the wetting line, without imposing explicitly the contact- 

angle itself. The mechanical problem is discretised by using finite elements, linear both in velocity and 

pressure, stabilised with a variational multiscale method, including the possibility of enrichment of the 

pressure space. The moving interface is captured by a Level-Set methodology, combined with a mesh 

adaptation technique with respect to both pressure and level-set fields. Our methodology can simulate 

capillary-driven flows in 2D and 3D with the desired precision: droplet spreading, droplet coalescence, 

capillary rise. In each case, the equilibrium state expected in terms of velocity, pressure and contact an- 

gle is reached. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Capillary phenomena are physical processes driven by the sur- 

face tension or surface energy of immiscible media [1–4] . The term 

“surface tension” is used when dealing with an interface between 

two fluids, while “surface energy” is employed when at least one 

of the domains in contact is a solid. For the sake of simplicity, 

these terms will be synonymously employed in this paper. How- 

ever, there is still a fundamental difference between both of them: 

while surface tension refers to the stress state of the interface, 

surface energy refers to its energy density. In the situations in- 

vestigated, three media, two fluids (liquid and gas) and a solid 

substrate, intersect at what is called a triple junction. This is a 

point, in two-dimensions, or a line, in three-dimensions, also called 

contact or wetting line. When in non-equilibrium, the force bal- 

ance at the triple junction, causes the fluids to flow, and conse- 

quently induces a motion of the interface. This explains the spread- 

ing of a droplet on a solid substrate, as well as the rise of a liquid 

into a capillary tube, the two standard applications which will be 

discussed. Capillary phenomena have important implications in a 
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wide range of industrial and scientific domains. For example, the 

fabrication of textured surfaces with superhydrophobic [5] proper- 

ties, is still challenging for the automotive or aeronautics industry. 

In another context, the void formation observed in some bio-based 

composite materials, manufactured by liquid composite moulding, 

can be correlated to the value of the capillary number, that is the 

ratio between viscous and capillary forces [6,7] . 

Capillary phenomena will be described within a macroscopic 

continuum mechanics framework. In the literature dealing with 

computational aspects of capillary phenomena at continuum scale, 

the force balance at the triple junction is usually substituted for an 

angle condition to be enforced. Following the classification given 

by Sprittles and Shikhmurzaev [8] , this enforcement is performed 

either essentially or naturally through the variational formulation. 

When the contact-angle condition is seen as an essential boundary 

condition, some iterative scheme is usually employed to alterna- 

tively compute the contact interface velocity and modify the ge- 

ometry of the interface until reaching a steady state. This strat- 

egy is adopted by Bellet [9] , Liu et al. [10] , but also Spelt [11] . In 

this last reference, the geometry is modified in the reinitialisation 

step of the level-set interface-capturing method. The natural as- 

signment of the contact-angle is based on the integration by part 

of the Laplace’s law in the variational form of the mechanical prob- 

lem. A boundary term, defined at the triple junction, appears when 
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integrating by parts. Then, it can be replaced by the angle condi- 

tion in the variational problem, as described by Sprittles in [8,12] . 

Usually, this condition connects the apparent angle, static angle, 

and the flow in the vicinity of the triple junction. Mechanically, as 

mentioned by Buscaglia and Ausas [13] , but also by different au- 

thors [14–16] , the angle condition considers a localised dissipation 

which could model the roughness or heterogeneity of surfaces, for 

example. 

This paper offers an original finite element model of wetting 

problems, based on a variational formulation of the mechanical 

problem, in which the force balance is naturally imposed at the 

triple junction. The two fluids, assumed to be Newtonian, represent 

a liquid and a surrounding medium (typically air). To simplify the 

computational complexity, inertia effects are neglected. Therefore, 

the mechanical problem is reduced to the bifluid Stokes’ equations, 

which describe a quasi-static system, allowing only the transient 

evolution of the liquid-gas interface. Consequently, the objective of 

this paper is mainly to study the ability of the proposed approach 

to predict successfully the final steady equilibrium state, and not 

to capture the transient dynamics with accuracy. 

A crucial point of our approach is to fully consider all three 

interfaces meeting at the triple junction. Hence, working out the 

balance of forces acting on a surface element leads directly to the 

weak formulation of Laplace’s law. Subsequently, considering this 

on liquid, gas and solid interfaces, provides a variational formu- 

lation of the mechanical problem, which can deal with the sur- 

face energy discontinuity across the triple junction, as well as ex- 

press implicitly the force balance at the triple junction. Contrary 

to most of the previous cited articles, this force balance is not de- 

scribed in contact-angle terms, but directly in terms of surface ten- 

sion and surface energies. Consequently, the equilibrium value of 

the contact-angle is not imposed numerically, but results from the 

computation of this mechanical equilibrium at the triple junction. 

Computationally, the mechanical equations are discretised using a 

stabilised finite element (FE) technique. A level-set method, com- 

bined with an anisotropic mesh-adaptation strategy, is used to de- 

scribe the moving interface with accuracy. 

The rest of this paper is organised as follows. The mechani- 

cal problem, or bifluid Stokes’ system, is presented and detailed 

in Section 2 , with a special focus on the balance of forces acting 

on the interfaces and at the triple junction. Section 3 establishes 

the variational formulation of this system. In these two sections, a 

tensor analysis setting, based on the introduction of the co- and 

contra-variant tangent bases, is used to mathematically describe 

surfaces and their geometry. Using tensor analysis describes sur- 

faces embedded in R 

3 and curves embedded in R 

2 in a unified 

framework. The computational strategy is detailed in Section 4 . 

More precisely, the FE setting is given, including discrete problem 

stabilisation, pressure space enrichment, mesh adaptation strategy, 

and level-set method used to capture the interfaces. Finally, sim- 

ulation results are shown in Section 5 . First, accuracy of the FE 

framework is assessed through 2D-simulations of droplet spread- 

ing. Second, the numerical developments are used to carry out 3D- 

simulations of droplet spreading and flows in a capillary tube as 

well. 

2. Mechanical problem 

Let � be a bounded region of R 

d ( d = 2 , 3 is the spatial di- 

mension), also referred to as the computational domain. This do- 

main contains two immiscible parts: a liquid part, denoted �1 , im- 

mersed in a surrounding medium �2 , also referred to as a gaseous 

medium or the air. Furthermore, the liquid �1 is lying on a rigid 

substrate, identified with a boundary of the computational domain. 

Such a situation is illustrated for simplicity in 2D ( Fig. 1 ): � is the 

Fig. 1. Schematic of the computational domain � = �1 ∪ �2 . The boundary ∂� is 

divided into two distinct parts, ∂� = �D ∪ �N . In this 2D-case, �N = { y = 1 } , and 

�D = ∂�\ �N . 

unit square, while �1 is half a liquid droplet spreading along the 

plane { y = 0 } . 
Both media �1 and �2 are assumed to behave as incompress- 

ible Newtonian fluids of viscosities η1 and η2 , respectively, with 

η2 �η1 . Neglecting inertial effects, momentum balance and in- 

compressibility lead to Stokes’ equations, expressed in terms of ve- 

locity v and pressure p , and governing the flow into � = �1 ∪ �2 : 

∇ · σ = −b ⇔ ∇ · (2 η ˙ ε ( v )) − ∇p = −b in �, (1) 

and 

∇ · v = 0 in � (2) 

In momentum balance (1) , σ is the Cauchy stress tensor 1 , η the 

global viscosity field, b represents the body forces ( e.g. gravity), 

all these quantities being associated with the ith fluid in �i . The 

strain rate tensor ˙ ε ( v ) is defined as the symmetric part of the ve- 

locity gradient, ˙ ε ( v ) = 

1 
2 (∇ v + (∇ v ) T ) . 

This bifluid Stokes’ system is closed when considering boundary 

conditions. As shown in Fig. 1 , two types of conditions will be as- 

sumed in the simulations presented. Let us divide the boundary 

of the computational domain into two parts, �D and �N : ∂� = 

�D ∪ �N and �D ∩ �N = ∅ . The stress vector is imposed over the 

boundary �N through a Neumann condition: σ · n = −p ext n , where 

p ext is a scalar (the external pressure), and n the outward normal 

to �N . Over �D , the normal velocity is imposed as zero (Dirichlet 

condition), except at the two ends of �D where v = 0 is consid- 

ered. These ends are the two points (0,1) and (1,0) shown in Fig. 1 . 

More generally, we write that v = 0 on ∂�D . The reason of this 

special condition appears when establishing the weak formulation 

of the mechanical problem: it allows to remove the correspond- 

ing boundary terms that result from the integration by part of the 

capillary terms. 

However, this Stokes’ system is physically irrelevant without 

taking into account additional mechanical equilibrium conditions. 

1 Here and in the following, all vectors and tensors are written in bold font. 
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