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a b s t r a c t 

The nonlinear interaction between a bubble and a nearby free surface is an important phenomenon, 

which becomes more complex when the bubble breaks and re-closes at the free surface. In this paper, 

an axisymmetric bubble dynamics model based on the Eulerian finite element method with the interface 

tracked by the volume of fluid (VOF) method is established to numerically investigated the breaking and 

re-closure of a bubble near a free surface. An experimental validation of the numerical model reveals 

its good accuracy. The motion, breaking, and re-closure of small and large bubbles at a free surface are 

simulated. Complex phenomena are observed in the simulation after the break of the bubble. Under the 

effects of inward gas flow and the pressure difference between its inside and outside, a broken bubble 

finally recloses. The convergence and impact of a spike wall generate an upward water spray higher than 

that from an intact bubble. Furthermore, the critical depth at which the bubble period reaches its peak 

has a negative relationship with the weight of the explosive charge used to generate the bubble. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Bubbles with a large pressure difference between the internal 

gas and the ambient flow are widely observed, such as bubbles 

generated by underwater explosions threatening the safety of war- 

ships, bubbles caused by cavitation causing propellers erosion, and 

bubbles released by air guns to exploring the geology of the deep 

ocean. Much research has revealed the presence of nonlinear inter- 

actions when a bubble moves near a free surface [1–8] . The bub- 

ble is repelled by the free surface, and a liquid jet emerges from 

the latter, penetrating the bubble during the collapse phase. At the 

same time, a spike appears on the free surface and exhibits com- 

plex dynamics varying with the initial conditions. These complex 

characteristics are highly nonlinear because of the geometric non- 

linearity caused by the large deformation of interfaces. Boundary 

element method (BEM) is one of the most widely used methods 

in non-spherical bubble dynamics research. As a significant pio- 

neer, Blake systematically analyzed the mechanisms through which 

bubbles interact with different boundaries including free surfaces, 

and introduced the Blake criterion to predict the overall motion 

of such bubbles [1,9,10] . The doubly connected flow field that ap- 

pears after a bubble has been penetrated by a jet violates the ba- 

sic assumptions of potential flow in BEM. Wang et al. [6,11] and 
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Pearson et al. [5] introduced different approaches to deal with this 

problem, thereby improving the application of the BEM to bubble 

dynamics. Zhang et al. [12] extended the application of the vortex 

ring model proposed by Wang to the cases of breaking of a toroidal 

bubble. Wang et al. [13] used the BEM to investigate the bursting 

of an underwater explosion bubble at a free surface and showed 

that a water pillar would emerge and rise to a great height even 

when the bubble breaks soon after formation. Because of the effi- 

cient way in which it deals with interfaces, the BEM has great ad- 

vantages for the simulation of moving-boundary problems in infi- 

nite flow fields, specifically those involving bubble dynamics. How- 

ever, when the topology of the fluid field changes in a complicated 

manner, such as in the case of jet penetration or the bursting of a 

bubble at a free surface, the need for mesh surgery and the pres- 

ence of a multivalued velocity potential cause great difficulties for 

numerical simulations. For this reason, most previous work in this 

area based on the BEM has focused on bubble dynamics in the 

early stages of oscillation. 

Computational fluid dynamics (CFD) methods with an Eulerian 

mesh have been successfully applied in multiphase hydrodynamics 

simulations. Interface tracking methods are crucial for the repre- 

sentation and simulation of multiphase flows. The front tracking 

method [14–16] advances the interface with a prescribed velocity 

field through an Eulerian mesh, which, like the BEM, can preserve 

sharp interfaces, but suffers from the same difficulties when faced 

with topology change. The level-set method [17–21] and the vol- 

ume of fluid (VOF) method [22–26] both introduce auxiliary func- 
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Fig. 1. Configuration for the interaction between a bubble and a free surface. 

tions to determine the location of the interface and advect them 

with the transfer equation. These methods have the necessary flex- 

ibility to deal with changes in interface topology and thus both of 

them have been widely used in bubble dynamics simulations. 

The present paper employs the Eulerian finite element method 

to solve an axisymmetric problem in which a bubble moves near 

a free surface. The VOF method is adopted to deal with the multi- 

phase problem. Both small and large bubbles moving and bursting 

near a free surface are simulated and analyzed. 

2. Theoretical and numerical models 

The problem studied here is sketched in Fig. 1 . A spherical high- 

pressure gas bubble is initially placed beneath the free surface in 

still water at a depth d . Then, the bubble starts expanding and in- 

teracting with the free surface. To simplify the numerical model, 

environment factors, such as the surface waves, the ocean current 

and nearby boundaries except the free surface and the bubble, are 

all ignored. Thus, with the axisymmetric initial and boundary con- 

ditions, the flow field is also assumed to be axisymmetric, although 

the symmetry may be broken when small-scale disruptions of the 

interface are considered. This assumption limits the present nu- 

merical model into an idealized problem. Thus, following the ap- 

proach adopted in previous work [1,4,11,27,28] , a cylindrical coor- 

dinate system is set up with the origin o at the free surface right 

above the bubble and with oy taken as the symmetry axis. x repre- 

sents the radial coordinate, while y represents the axial coordinate 

pointing upward. The computational domain is taken as a rectan- 

gle of width w and heights h 1 and h 2 beneath and above the free 

surface, respectively. 

2.1. Eulerian finite element method for bubble dynamics 

It has been shown that the viscosity of the fluid is not impor- 

tant for bubbles generated by underwater explosion or cavitation 

with a high Reynolds number [3,27,29–31] . The stress tensor of the 

fluid can then be simplified as a scalar representing the pressure. It 

is assumed in this paper that the Mach number of the gas within 

the bubble is sufficiently high that the compressible Eulerian equa- 

tions are appropriate. It is clear that the details of the disruption 

of the interface and the motion of small droplets thereby formed 

will be dominated by surface tension effects. However, this paper 

is concerned only with the overall flow pattern. Thus, given the 

length scales of the liquid jet and the free surface spike, the sur- 

face tension effects are ignored following previous published pa- 

pers [1,4,6,46] . 

The Eulerian finite element method is an efficient approach to 

solve structural or fluid dynamics problems involving large defor- 

mations. Its detailed formulation can be found in the literature 

[32–34] . In this paper, an operator split technique is used to sep- 

arate the calculation into two phases within a single time incre- 

ment. The first phase is solved using the explicit finite element 

method from a Lagrangian perspective in which the mesh moves 

along with the material. At the end of the time increment, the de- 

formed mesh is moved back to its original position, and the con- 

vection between elements is calculated; this is usually called the 

Eulerian phase. 

In the Lagrangian phase, the conservation of momentum can be 

expressed as 

dρ ˙ u 

dt 
+ ∇p = ρg , (1) 

where ρ and p are the density and pressure of the fluid, g is the 

gravity, and u is the displacement vector. By multiplying both sides 

of Eq. (1) with an arbitrary weight function φ and integrating over 

the control volume V , the weak form of Eq. (1) can be rewritten as 

∫ ∫ ∫ 
V 

(
dρ ˙ u 

dt 
+ ∇p 

)
φ dv = 

∫ ∫ ∫ 
V 

ρg φ dv . (2) 

The term x φ∇p is then integrated by parts and the formula is 

expanded in the cylindrical coordinate system as ∫ ∫ 
�

x ( ρü φ − p∇φ) d� = −
∫ 
�

xp ̂  n φ d� + 

∫ ∫ 
�

p ̂ e 1 φ d�

+ 

∫ ∫ 
�

xρg φ d�, (3) 

where the volume integral has been simplified as an area integral 

over the discrete element �, and factors of 2 π have been dropped 

on both sides. The first two integrations on the right-hand side 

are derived from the integration by parts and the Gauss–Green 

formula. � is the boundary of the integration domain �, ˆ n is its 

unit normal vector, and ˆ e 1 = ∇x is the unit vector pointing in the 

radial direction. Taking � as the shape function of the element, 

Eq. (3) can be rewritten in the semi-discretized form ∫ 
�

( xρ�M 

�N ) d� ü 

N = 

∫ 
�

( xρg �M 

− xp∇ �M 

) d� + 

∫ 
�

xp ̂  n �M 

d�

+ 

∫ ∫ 
�

p ̂ e 1 �M 

d�, (4) 

where the arbitrary weight function φ has been replace by the 

shape function �. The subscripts M and N indicate nodal variables 

at nodes M and N , respectively. The acceleration vector ü is then 

calculated by solving Eq. (4) . The nodal velocity and displacement 

are integrated explicitly with the second-order central difference 

method, 

˙ u 

n + 1 / 2 = ˙ u 

n −1 / 2 + ü 

n �t, (5) 

u 

n +1 = u 

n + ˙ u 

n + 1 / 2 �t, (6) 

where �t is the time increment, and the superscript n indicates 

the number of the increment. After the nodal position has been 
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