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a b s t r a c t 

A ghost-point immersed boundary method for the compressible Navier–Stokes equations with moving 

boundaries on fixed Cartesian grids is devised by employing high order summation-by-parts (SBP) dif- 

ference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall 

boundary conditions via flow variables at ghost points using bilinearly interpolated flow variables at mir- 

ror points. Simulations for compressible viscous flows induced by a transversely oscillating cylinder in a 

free-stream and a harmonic in-line oscillating cylinder in an initially quiescent fluid are presented and 

compared with experiments and incompressible fluid flow simulations obtained with body-conforming 

grid methods. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Numerous engineering, biological and biomedical systems in- 

volve moving boundaries and fluid structure interaction. Conven- 

tional computational approaches for moving boundaries are usually 

based on body-conforming grids such as the arbitrary Lagrangian–

Eulerian (ALE) formulation [1–3] . In this method, a Lagrangian 

mesh following the material points is employed to discretize the 

solid body, and a moving mesh is used to discretize the flow do- 

main and to conform to the instantaneous configuration of the 

solid body. Although the boundary conditions of the flow can be 

easily imposed at the solid body in body-conforming methods, an 

algorithm is required to move the mesh points in the fluid flow 

domain along with solid boundary movement or deformation. 

On the other hand, there has recently been a growing inter- 

est to develop non-body conforming methodologies to solve these 

types of multidisciplinary problems. In such methods, the grid is 

not required to conform to the solid body and moving bound- 

aries. The major advantage of these methods is that they simplify 

the grid generation process, particularly in cases of moving bound- 

aries where the requirement of re-meshing is eliminated. There are 

several approaches in computational fluid dynamics (CFD) to treat 

complex or moving boundary problems based on non-body fitted 

Cartesian grids. The most notable among them is the immersed 

∗ Corresponding author. 

E-mail address: mohammadtaghi.khalili@ntnu.no (M. Ehsan Khalili). 

boundary method (IBM). According to Mittal and Iaccarino [4] , IB 

methods can be broadly classified into two categories, namely a 

continuous forcing approach and a sharp interface method (dis- 

crete forcing) based on a procedure of imposing boundary con- 

ditions [4] . In the first category which was originated by Peskin 

[5,6] , a forcing function is included in the momentum equation and 

then applied to the entire domain. Peskin [5] introduced the term 

of “immersed boundary method” and developed the approach to 

simulate blood flow in the cardiovascular system to deal with elas- 

tic boundaries. Goldstein et al. [7] developed the continuous forc- 

ing approach to model the effect of rigid bodies by using feedback 

forcing. The significant advantage of continuous forcing approaches 

is that they are independent of the underlying spatial discretiza- 

tion. However, the major drawbacks of these types of IBM are that 

they may induce spurious oscillations, and exhibit numerical insta- 

bility issues, particularly for unsteady flows at high Reynolds num- 

bers due to the inherent stiffness of the forcing terms [7,8] . 

In the direct forcing approach proposed by Mohd-Yusof [9] , the 

governing equations are discretized on a Cartesian grid without 

computing any forcing term directly. In this approach, the effect of 

the body force is calculated by determining the difference between 

the mirrored velocity at internal points inside the body and the ve- 

locity at external points outside the body to enforce the tangential 

velocity at the immersed boundary. Fadlun et al. [10] further im- 

plemented linear interpolations for the reconstruction of the veloc- 

ity at the grid point near the solid body boundary so that the inter- 

polation direction can be chosen arbitrarily. Balaras [11] modified 
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the approach by using the reconstruction scheme and interpola- 

tion along the direction normal to the body surface. In the work by 

Gilmanov et al. [12] , the restriction of a linear interpolation scheme 

for the velocity along the local normal direction was extended to 

arbitrarily complex, three-dimensional geometries by discretizing 

the body surface using triangular panels. They also extended their 

immersed boundary methods to moving-body simulations at dif- 

ferent Reynolds numbers [13,14] . Gilmanov et al. [13] considered 

arbitrarily complex moving bodies by employing a second order 

hybrid staggered/non-staggered grid approach. Yang and Balaras 

[14] introduced the concept of field-extension to treat the points 

emerging from a moving solid body to the fluid. These methods 

generally rely on reconstructions of the solution at the so-called 

forcing nodes (fluid points with at least one neighboring point in- 

side the solid body). 

Another direct forcing approach which reconstructs the solution 

at the ghost cells was introduced by Tseng and Ferziger [15] . Ghost 

cells are defined as cells within the solid body having at least one 

neighboring cell inside the fluid domain [16] . Mittal et al. [16] have 

shown the large potential of the ghost cell approach to deal with 

highly complex geometries as well as moving and deforming bod- 

ies. The concept of the image point which is the mirror of the 

ghost-cell point along the normal direction to the body surface 

was first introduced in the works [16,17] . They constructed inter- 

polation operators in the normal direction to the IB in order to 

simplify the implementation of Neumann boundary conditions at 

the IB [16,17] . 

Nonetheless, most immersed boundary methods are designed 

for incompressible flows [4] . Investigations of viscous compressible 

flows particularly in interaction with moving bodies are still scarce. 

Only few IB methods for viscous compressible flows and acoustic 

wave propagation problems have been developed [18] . Due to the 

different mathematical characteristics of the Navier–Stokes equa- 

tions for compressible and incompressible flows, there are differ- 

ences in the implementation of the boundary conditions between 

these two types of equations as well as in the spatial discretization 

schemes employed [18,19] . 

Global and local conservation can be obtained by the Cartesian 

cut-cell method for immersed boundary problems [20,21] . In the 

cut-cell method, a finite volume scheme is designed to represent 

the conservation laws also for cells cut by the immersed bound- 

ary. Since this method resolves the forces at the immersed bound- 

ary and directly discretizes the conservation laws for mass, mo- 

mentum, and energy, this method is especially attractive for mov- 

ing boundary problems. However, the wide range of possibilities of 

geometrical shapes for cut-cells (complex polyhedral cells) causes 

difficulties in extending the method to 3D and implementing it for 

arbitrarily complex geometries. 

In this study, the ghost point IB approach has been adopted for 

treating moving immersed boundaries using a high order finite dif- 

ference method based on summation-by-parts (SBP) operators to 

provide an accurate and efficient approach for studying low Mach 

number compressible viscous flows. The main focus in our study 

is the presentation, verification and validation of our high order 

IBM. Our method allows to simulate not only subsonic viscous flow 

around moving bodies, but also acoustic wave propagation. The 

proposed approach is verified and validated for two dimensional 

flows over in-line and transversely oscillating circular cylinders. 

The paper is organized as follows. In Section 2 , the model for 

fluid flow is presented. In Section 3 , the numerical method is de- 

scribed. The immersed boundary formulation for moving bodies, 

the treatment of newly emerged fluid points and the implementa- 

tion of the boundary conditions are explained. In Section 4 , results 

are provided and compared with numerical and experimental data 

available in the literature. Conclusions are stated in Section 5 . 

2. Compressible Navier–Stokes equations 

In the present study, the 2D compressible Navier–Stokes equa- 

tions in perturbation form are solved. The perturbation formula- 

tion is employed to minimize cancellation errors when discretizing 

the Navier–Stokes equations for compressible low Mach number 

flow [22,23] . The conservative form of the 2D compressible Navier–

Stokes equations in perturbation formulation can be written as 

U 

′ 
t + F c 

′ 
x + G 

c ′ 
y = F v 

′ 
x + G 

v ′ 
y , (1) 

where U 

′ = U − U 0 is the vector of conservative perturbation vari- 

ables with U = (ρ, ρu, ρv , ρE) T the vector of the conservative vari- 

ables and U 0 = (ρ0 , 0 , 0 , (ρE) 0 ) 
T the stagnation values. 

The conservative perturbation variables U 

′ and the inviscid ( F c ′ , 
G 

c ′ ) and viscous perturbation flux vectors ( F v ′ , G 

v ′ ) are defined by 

F c ′ = F c (U ) − F c ( U 0 ) , etc., according to 
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, 

where t is the physical time and x and y are the Cartesian co- 

ordinates. ρ denotes density, u and v the x - and y -direction ve- 

locity components, E the specific total energy, T the temperature 

and κ the heat conduction coefficient calculated from the constant 

Prandtl number Pr = 0 . 72 . ρ0 , ( ρE ) 0 and ( ρH ) 0 denote the stagna- 

tion values of density, total energy density and total enthalpy den- 

sity, respectively. The perturbation variables are given as follows 

ρ ′ = ρ − ρ0 , (ρu ) ′ = (ρu ) , (ρE) ′ = ρE − (ρE) 0 , 

(ρH) ′ = (ρE) ′ + p ′ , u 

′ = 

(ρu ) ′ 
ρ0 + ρ ′ , 

τ ′ = μ(∇u 

′ + (∇u 

′ ) T ) − 2 

3 

μ(∇ · u 

′ ) I , 

T ′ = 

p ′ /R − ρ ′ T 0 
ρ0 + ρ ′ . 

Here, R is the specific gas constant and μ is the vis- 

cosity which is determined from the Sutherland law 

μ
μ0 

= ( T T 0 
) 1 . 5 [( 1 + S c ) / ( 

T 
T 0 

+ S c )] with the non-dimensional Suther- 

land constant S c = 

110 
301 . 75 . 

Since perfect gas is considered, the pressure perturba- 

tion can be related to the conservative perturbation variables 

p ′ = (γ − 1)[(ρE) ′ − 1 
2 ((ρu 

′ · u 

′ ))] , where the ratio of specific 

heats γ = c p /c v = 1 . 4 for air. 

The flow variables are non-dimensionalized with ρ0 , stagnation 

speed of sound c 0 and ρ0 c 
2 
0 as reference values. In order to gener- 

alize the geometry for non-uniform Cartesian grids, the equations 

of motion are transformed from the physical domain ( x, y ) to the 

computational domain ( ξ , η) by a mapping, 

ξ = ξ (x, y ) , 

η = η(x, y ) . (2) 

Thus, the transformed 2D compressible Navier–Stokes equations in 

perturbation form are expressed as: 

ˆ U 

′ 
t + ̂

 F ′ ξ + 

ˆ G 

′ 
η = 0 , (3) 
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