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a b s t r a c t 

In this paper we introduce a definition of the local conservation property for numerical methods solv- 

ing time dependent conservation laws, which generalizes the classical local conservation definition. The 

motivation of our definition is the Lax–Wendroff theorem, and thus we prove it for locally conserva- 

tive numerical schemes per our definition in one and two space dimensions. Several numerical methods, 

including continuous Galerkin methods and compact schemes, which do not fit the classical local conser- 

vation definition, are given as examples of locally conservative methods under our generalized definition. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Local conservation is a desired property for numerical meth- 

ods solving conservation laws. The most important theoretical rea- 

son is the well-known Lax–Wendroff theorem [11] . It states that 

the finite volume method (in 1D) taking the conservation form 

would converge to a weak solution of the underlying conservation 

law, if the numerical solutions actually converge. It is easy to give 

counterexamples, e.g. in LeVeque [12] , that finite volume methods 

not in conservation form could converge to non-weak-solutions 

with wrong shock speed. Kröner and Rokyta [9] and Kröner et al. 

[10] have extended the Lax–Wendroff theorem to finite volume 

methods on unstructured meshes for 2D conservation laws. Abgrall 

et al. [2] have further generalized the Lax–Wendroff theorem to 

residual schemes. 

The finite volume methods and discontinuous Galerkin (DG) 

methods, see, e.g., [4] , are by design locally conservative numeri- 

cal schemes. We could easily extend the Lax–Wendroff theorem to 

DG methods by setting the test function to value 1 in one cell and 

0 in all other cells. Continuous Galerkin (CG) methods are consid- 

ered only globally conservative until Hughes et al. [8] showed that 

it is actually locally conservative. But their definition of flux is not 

consistent with ours in this paper, because in their definition at 

least one of the two neighboring subdomains has to be global (that 

is, its size is comparable to that of the whole domain and hence 
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does not go to zero with mesh refinements) to get the unique- 

ness of the flux across the boundary between these two subdo- 

mains. Perot [13] showed the local conservation of the CG methods 

with a different flux definition that is consistent with our defini- 

tion ( Section 3.4.3 ). See also Abgrall [1] for the discussion of local 

conservation of CG methods. 

The notion of local conservation is widely known as the rate 

of change of a quantity (in the classical definition this is the total 

mass in the cell) being equal to the sum of locally defined fluxes 

(exchange with neighbors), which is the idea underlying the phys- 

ical conservation laws. However, the absence of a rigorous defini- 

tion makes it arguable as to whether a numerical method is lo- 

cally conservative or not. In this paper, we give a formal defini- 

tion of the local conservation property for numerical methods in 

one and two space dimensions. The motivation for our definition is 

the requirements in the classical Lax–Wendroff theorem, and nat- 

urally we prove it for locally conservative numerical methods per 

our definition. 

The rest of the paper is organized as follows. In Section 2 , we 

introduce the definition of local conservation in one space dimen- 

sion, and prove the corresponding Lax–Wendroff type theorem. 

Some examples of locally conservative numerical methods in 1D 

according to our definition are given at the end of the section. 

Section 3 is about local conservation in two space dimensions. As 

in Section 2 , we give the formal definition, prove a Lax–Wendroff

type theorem, and present some examples of locally conservative 

numerical methods in 2D. 
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2. One dimensional conservation laws 

We first consider one dimensional scalar conservation laws: 

u t + f (u ) x = 0 in R 

+ × R 

u (·, 0) = u 0 in R , 
(1) 

where the flux function f is at least Lipschitz continuous. We 

would like to formally define the local conservation property 

for numerical schemes designed for the above conservation laws, 

and prove a Lax–Wendroff type theorem for locally conservative 

schemes. 

2.1. Numerical schemes 

We consider in our presentation only schemes with Euler for- 

ward time stepping since the spatial discretization is our primary 

concern, and thus the schemes read: 

u h (·, t n +1 ) − u h (·, t n ) 
�t n 

= L ( u h (·, t n ) ) , (2) 

where the time domain is discretized as 0 = t 0 < t 1 < t 2 . . . with t n 
→ ∞ as n → ∞ . Time steps are defined as �t n = t n +1 − t n , �t = 

max n ≥0 �t n . The numerical solution u h is a function over the time- 

space domain R 

+ × R , which is consistent with the initial condi- 

tion in the sense of (10) . Since the scheme only defines the nu- 

merical solution when t = t n , ∀ n ≥ 0 , we expand u h to be a con- 

stant over each time interval, i.e. u h (x, t) ≡ u h (x, t n ) , ∀ t ∈ [ t n , t n +1 ) . 

Therefore, we can denote functions over the space domain u n 
h 

= 

u h (·, t) , ∀ t ∈ [ t n , t n +1 ) . For example, u n 
h 

is a piecewise constant 

function for finite difference and finite volume methods, and a 

piecewise polynomial for Galerkin methods. 

To define the local conservation property, we need (i) a parti- 

tion of the spatial domain into intervals R = ∪ j∈ Z I j , (ii) a locally 

conserved quantity on each cell, and (iii) a flux on each interval 

endpoint. The intervals I j = [ x 
j− 1 

2 
, x 

j+ 1 
2 

] , and they satisfy the regu- 

larity condition: | I j | > c 0 h , where | I j | is the length of the interval, 

mesh size h = max j∈ Z 
∣∣I j ∣∣, and c 0 > 0 is independent of the mesh 

size. For simplicity, we now denote 
∑ + ∞ 

n =0 as �n , and 

∑ 

j∈ Z as �j . 

2.2. Definition of local conservation 

We define a numerical scheme to be locally conservative if its 

solution satisfies the following conservation form (cf. [11] ): 

ū 

n +1 
j 

− ū 

n 
j 

�t n 
+ 

1 ∣∣I j ∣∣
(

g j+ 1 2 
(u 

n 
h ) − g j− 1 

2 
(u 

n 
h ) 

)
= 0 . (3) 

Here ū n 
j 

(generalized locally conserved quantity) and g 
j+ 1 

2 
(general- 

ized flux) both depend on the numerical solution locally. More pre- 

cisely, they depend on u n 
h 

(
B j 

)
. B j = 

{
x ∈ R : 

∣∣x − w j 

∣∣ < c h 
}
, where 

w j is the midpoint of the interval I j , and c ≥ 1 is independent of 

the mesh size. Note that ū n 
j 

here is not necessarily the cell average 

( 1 | I j | 
∫ 

I j 
u n 

h 
) even though we use the traditional notation for cell av- 

erages. The conserved quantity and flux also need to be consistent 

and bounded in the following sense: 

• consistency : if u n 
h 
(x ) ≡ u, a constant, ∀ x ∈ B j , we have: 

ū 

n 
j = u, (4) 

g j+ 1 2 
(u 

n 
h ) = f (u ) , (5) 

• boundedness : they are both bounded with respect to the L ∞ - 

norm of the solution: ∣∣ū 

n 
j − v̄ n j 

∣∣ ≤ C ‖ u 

n 
h − v n h ‖ L ∞ ( B j ) , (6) 

∣∣∣g j+ 1 2 
(u 

n 
h ) − g j+ 1 2 

(v n h ) 

∣∣∣ ≤ C ‖ u 

n 
h − v n h ‖ L ∞ ( B j ) (7) 

for two functions ( u h and v h ) in the numerical solution space. 

To get global conservation from our definition, we also require 

the summation of the local conservation quantities being exactly 

the global conservation quantity: ∑ 

j 

∣∣I j ∣∣ū 

n 
j = 

∫ 
R 

u h (x, t n ) dx, ∀ n ≥ 0 . (8) 

It is easy to see that (8) together with (3) implies the following 

global conservation: ∫ 
R 

u h (x, t) dx = 

∫ 
R 

u h (x, 0) dx, ∀ t > 0 . (9) 

We now have gathered all parts, and give the formal definition 

of local conservation. 

Definition 2.1. A numerical scheme of the form (2) is locally con- 

servative if there are conserved quantities and fluxes, both of 

which locally depend on the numerical solution and satisfy (3) –(8) . 

2.3. Lax–Wendroff type theorem 

In this section, we prove a Lax–Wendroff type theorem for lo- 

cally conservative numerical schemes in the sense of Definition 2.1 . 

We first assume that the initial condition is weakly enforced in the 

numerical solution as follows: ∫ 
R 

(
u 0 − u 

0 
h 

)
φ → 0 , as h → 0 , ∀ φ ∈ C ∞ 

0 ( R ) . (10) 

To get the convergence result, we also need an assumption similar 

to the bounded total variation of the numerical solution: 

h 

∑ 

j 

max 
x ∈ B j 

∣∣u 

n 
h (x ) − u 

n 
h (w j ) 

∣∣ → 0 , as h → 0 , ∀ n ≥ 0 (11) 

The assumption (11) on the numerical solution may seem odd at 

first glance, but it is actually implied by boundedness of total vari- 

ation as Proposition 2.2 shows. Recall the definition of total varia- 

tion: 

TV (u 

n 
h ) = sup 

P 

+ ∞ ∑ 

i = −∞ 

∣∣u 

n 
h (x i +1 ) − u 

n 
h (x i ) 

∣∣, (12) 

where P denotes the set of all partitions of the real line R . 

Proposition 2.2. If the numerical solution u n 
h 

has uniformly bounded 

total variation, i.e. 

TV (u 

n 
h ) < C, ∀ n ≥ 0 , (13) 

u n 
h 

satisfies the assumption (11) . 

Proof. We can deduce that there are a finite number of, say no 

more than p (independent of mesh size), intervals in each neigh- 

borhood B j from the regularity of the mesh and the definition of 

B j . We define the point that attains the maximal value of | u n 
h 
(x ) −

u n 
h 
(w j ) | in B j as m j , which is in some interval I k with | j − k | < p. 

We can therefore define a series of intervals ( I j 1 , I j 2 . . . I j p ) such 

that m j ∈ I j p , where j 1 = j, and | j s − j s +1 | ≤ 1 (∀ 1 ≤ s < p) . The 

summation in (11) can be estimated as follows: 

h 

∑ 

j 

max 
x ∈ B j 

∣∣u 

n 
h (x ) − u 

n 
h (w j ) 

∣∣ = h 

∑ 

j 

∣∣u 

n 
h (m j ) − u 

n 
h (w j ) 

∣∣
≤h 

∑ 

j 

( ∣∣u 

n 
h (m j ) − u 

n 
h (w j p ) 

∣∣ + 

p−1 ∑ 

s =1 

∣∣u 

n 
h (w j s ) − u 

n 
h (w j s +1 

) 
∣∣) 
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