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a b s t r a c t 

It is well known, thanks to Lax–Wendroff theorem, that the local conservation of a numerical scheme for 

a conservative hyperbolic system is a simple and systematic way to guarantee that, if stable, a scheme 

will provide a sequence of solutions that will converge to a weak solution of the continuous problem. In 

[1], it is shown that a nonconservative scheme will not provide a good solution. The question of using, 

nevertheless, a nonconservative formulation of the system and getting the correct solution has been a 

long-standing debate. In this paper, we show how to get a relevant weak solution from a pressure-based 

formulation of the Euler equations of fluid mechanics. This is useful when dealing with nonlinear equa- 

tions of state because it is easier to compute the internal energy from the pressure than the opposite. 

This makes it possible to get oscillation-free solutions, contrarily to classical conservative methods. An 

extension to multiphase flows is also discussed, as well as a multidimensional extension. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

According to the Lax–Wendroff theorem, it is well known that, 

when considering the numerical approximation of a system of hy- 

perbolic PDEs written in conservative form, the numerical scheme 

must be written in conservation form, too. It is also known that, 

for a sequence of meshes with characteristic sizes tending to zero, 

if a sequence of solutions remains bounded and if its subsequence 

converges in some norm in L p , p ≥ 1, then the limit solution is the 

weak solution of the original PDE. Moreover, if the scheme satis- 

fies a discrete entropy inequality, then the limit solution will auto- 

matically satisfy an entropy inequality. If conservation is lost, then 

there is no hope to get any meaningful solution, see [1] for the 

analysis. 

However, for engineering purposes, the conservative formula- 

tion of the behavior of a mechanical system is not necessarily the 

best one. Consider for example the Euler equations of fluid dynam- 

ics. The system of PDEs is 

∂ 

∂t 

( 

ρ
ρu 

E 

) 

+ div 

( 

ρu 

ρu � u + p Id 

(E + p) u 

) 

= 0 , (1) 
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supplemented by initial and boundary conditions. As usual, ρ
stands for the density, u for the velocity, and the total energy is 

E = e + 

1 

2 

ρu 

2 . 

The pressure p is related to these variables via an equation of state 

(EOS): 

p = p(ρ, e ) = p 

(
ρ, E − 1 

2 

ρu 

2 
)
. (2) 

The system (1) is hyperbolic if κ := 

∂ p 

∂e 
> 0 since the speed of 

sound c is defined by 

c 2 = κh, h = 

e + p 

ρ
. 

However, for engineering purposes, the relevant variables are not 

the conserved ones but rather the primitive ones, namely den- 

sity, velocity and internal energy or pressure. When the solution 

is smooth, system (1) can be equivalently written as: 

∂ 

∂t 

( 

ρ
ρu 

e 

) 

+ 

( 

div ρu 

div (ρu � u + p Id ) 
u · ∇e + (e + p) div u 

) 

= 0 (3) 

or 

∂ 

∂t 

( 

ρ
ρu 

p 

) 

+ 

( 

div ρu 

div (ρu � u + p Id ) 
u · ∇p + ρc 2 div u 

) 

= 0 . (4) 
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These equations are valid for smooth flows and cannot be con- 

sidered for discontinuities. Nevertheless, there have been several 

attempts to solve the Euler equations in formulation (3) or (4) , 

including solutions with shocks. One example of such method is 

Karni’s hybrid scheme [2,3] , where formulation (4) is used along 

slip lines only thanks to a switch in the scheme. In any case, this 

method violates strict conservation. 

This has been a long ongoing debate on how to, nevertheless, 

use formulations (3) or (4) for the numerical approximation of Eu- 

ler equations valid for all kinds of flows, e.g. with complex equa- 

tions of state. In the case of nonlinear equations of state, i.e. when 

the pressure explicitly depends on the density, the pressure ob- 

tained by the numerical scheme cannot be uniform across contact 

discontinuities. The reason for that behaviour is that, on one hand, 

the density is evaluated from the mass conservation, and, on the 

other hand, one evaluates the pressure via energy and density. If, 

in addition, we want the pressure to be constant across contact 

discontinuities, this puts a constraint that is in general not com- 

patible with the updated densities, momentum and total energy, 

see [4] for a short discussion. 

Up to our knowledge, in the Eulerian framework, there exists 

only one approach to this problem which is described in [5] . In this 

paper, we propose a simpler and more general framework for deal- 

ing with nonconservative formulations. We solve equations (3) or 

(4) in a way which is compatible with local conservation and the 

continuity of pressure and velocity across contact discontinuities. 

To achieve this, we rely on a finite volume formulation that uses 

residuals instead of fluxes. In a flux formulation, the unknowns 

are approximations of the average values of the conserved vari- 

ables, and they are balanced by the sum of normal fluxes across 

the boundary of the control volume. This assumes that the control 

volume has a polygonal shape. In general, these control volumes 

are interpreted as cells of a dual mesh which is made of simplices. 

In the residual formulation, one starts by a mesh whose elements 

are simplices, and interprets the unknowns as approximations of 

the point values of the conserved variables. These unknowns, for 

any given degree of freedom, are then updated by a sum of the 

local residuals over all the elements that share this degree of free- 

dom. Given any element K , the local conservation is recovered by 

requiring that the sum of the local residuals for that element is the 

normal flux over the boundary of K of some consistent approxi- 

mation of the flux. It is easy to show that any flux formulation 

leads to a residual form, and the opposite is also true. However, 

the fluxes that are computed depend not only on the solution on 

both sides of the face of the control volume, see [6] for details. 

The format of this paper is the following. In Section 2 , we recall 

how one can get a residual distribution formulation for the system 

(3) that is equivalent to a flux formulation of (1) . This enables us 

to get a relation on the increment of the energy that can be gener- 

alised for the residual formulation. In Section 3 , we show how to 

use this principle, first on energy-based formulation of the Euler 

equations (3) and then on the pressure-based formulation (4) for 

several kinds of equations of state. In Section 4 , this is further gen- 

eralised to multiphase flows where the phases may have very com- 

plex equations of state. Finally, we give some concluding remarks 

in Section 5 . 

2. From conservative to nonconservative formulation 

2.1. A residual formulation of a finite volume scheme 

The main advantage of the residual formulation can be under- 

stood from the one dimensional setting. Consider the problem: 

∂U 

∂t 
+ 

∂ f (U) 

∂x 
= 0 . 

With standard notations, a generic finite volume writes: 

U 

n +1 
j 

= U 

n 
j − λ

(
ˆ f j+1 / 2 − ˆ f j−1 / 2 ) 

where λ = �t/ �x and 

ˆ f j+1 / 2 is the flux between the states U 

n 
j 

and 

U 

n 
j+1 

. High order accuracy in space amounts to tune the arguments 

of the flux, high order in time can be reached via a SSP preserving 

scheme. To fix the conservation problem one must fix the scheme 

to recover a flux form, i.e to work directly with the fluxes. This is 

not easy from the algebraic point of view. 

It is known, see for example [7] that any finite volume scheme 

can be rewritten in terms of a distribution of the residual. Con- 

sider for example, and for simplicity, the one dimensional case, its 

generalisation to any kind of control volume is straightforward, see 

again [7] . 

The residual formulation writes (in its simplest form) as 

U 

n +1 
j 

= U 

n 
j − λ(� j+1 / 2 

j 
+ � j−1 / 2 

j 
) . 

The conservation is recovered if for any element [ x j , x j+1 ] one gets 

� j+1 / 2 
j 

+ � j+1 / 2 
j+1 

= f (U j+1 ) − f (U j ) (5) 

for any order of accuracy. For example one can go from a flux for- 

mulation to a residual formulation by defining: 

� j+1 / 2 
j 

= 

ˆ f j+1 / 2 − f (U j ) and � j+1 / 2 
j+1 

= f (U j+1 ) − ˆ f j+1 / 2 . 

The local conservation is a consequence of relation (5) . If we 

start from a nonconservative formulation in residual form, one can 

check the conservation if one can provide linear transformations of 

these residual to obtain a form satisfying (5) . 

2.2. Unsteady residual distribution formulation for the conservative 

case 

Consider a multidimensional hyperbolic system in the form 

∂U 

∂t 
+ div f (U) = 0 . 

Recall the residual distribution approach from [8] . We start by 

a Runge–Kutta (RK) formulation: knowing U 

n , we define: 

U 

(0) = U 

n , 

U 

(1) − U 

(0) 

�t 
+ div f (U 

(0) ) = 0 , 

U 

(2) − U 

(0) 

�t 
+ 

1 

2 

(
div f (U 

(0) ) + div f (U 

(1) ) 
)

= 0 , 

U 

n +1 = U 

(2) . 

Next for l = 0 , 1 we rewrite each sub-step as: 

U 

(l+1) − U 

(0) 

�t 
+ DIV F(U 

(l) , U 

(0) ) = 0 (6) 

where 

DIV F(U 

(l) , U 

(0) ) = 

1 

2 

(
div f (U 

(0) ) + div f (U 

(l) ) 
)

(7) 

This will provide an approximation that is second order in time. 

Without loss of accuracy, we can also write it as 

DIV F(U 

(l) , U 

(0) ) = div f 

(
U 

(0) + U 

(l) 

2 

)
(8) 

and the adapted modifications for the RK scheme. 

We assume that the computational domain � is covered by 

non-overlapping simplices { K j } j∈J , � = ∪ j∈J { K j } . The elements 

K j are segments in 1D, triangles/quadrilateral in 2D and tetrahe- 

drons/hexahedrons in 3D. In order to simplify the notations, we 
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