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a b s t r a c t 

In this work we present and compare three Riemann solvers for the artificial compressibility perturbation 

of the 1D variable density incompressible Euler equations. The goal is to devise an artificial compressibil- 

ity flux formulation to be used in Finite Volume or discontinuous Galerkin discretizations of the variable 

density incompressible Navier–Stokes equations. Starting from the constant density case, two Riemann 

solvers taking into account density jumps at fluid interfaces are first proposed. By enforcing the diver- 

gence free constraint in the continuity equation, these approximate Riemann solvers deal with density as 

a purely advected quantity. Secondly, by retaining the conservative form of the continuity equation, the 

exact Riemann solver is derived. The variable density solution is fully coupled with velocity and pres- 

sure unknowns. The Riemann solvers are compared and analysed in terms of robustness on harsh 1D 

Riemann problems. The extension to multidimensional problems is described. The effectiveness of the 

exact Riemann solver is demonstrated in the context of an high-order accurate discontinuous Galerkin 

discretization of variable density incompressible flow problems. We numerically validate the implemen- 

tation considering the Kovasznay test case and the Rayleigh–Taylor instability problem. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The numerical solution of both the constant and the variable 

density Incompressible Navier–Stokes (INS) equations is a challeng- 

ing task. On the one hand explicit integration in time is usually not 

employed due to the algebraic nature of the incompressibility con- 

straint, on the other hand fully coupled velocity-pressure formu- 

lations result in systems of Differential Algebraic Equations (DAEs) 

that are expensive to solve due to the saddle point nature of the 

problem. Decoupled time integration strategies based on projection 

methods, see Chorin [7] and Temam [15] , and artificial compress- 

ibility methods, see Chorin [6] , have been widely employed to im- 

prove the effectiveness of the solution strategy. A pressure correc- 

tion scheme for variable density incompressible flows was devised 

by Guermond and Quartapelle [9] while Pyo and Shen proposed a 

Gauge–Uzawa method [12] . 

In the context of discontinuous Galerkin (dG) formulations of 

incompressible flow problems, the artificial compressibility con- 

cept has been employed to recover hyperbolicity at inter-element 

boundaries and devise a suitable Godunov numerical flux for 

velocity-pressure coupling, see e.g. [3,4] . As an alternative ap- 
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proach, recently Tavelli and Dumbser [13,14] proposed to use stag- 

gered meshes within the dG framework. 

The dG method introduced by Bassi et al. [3] in the context of 

constant density INS equation is here extended in order to deal 

with variable density INS equations. In [3] the artificial compress- 

ibility is introduced only at the interface flux level to obtain a 

physically meaningful coupling between pressure and velocity. Ac- 

cordingly, the resulting INS equations discretization is consistent ir- 

respectively of the amount of artificial compressibility introduced. 

The artificial compressibility flux allows for equal degree velocity- 

pressure formulations and provides robustness when dealing with 

convection-dominated flow regimes but it only mitigates the dif- 

ficulties involved in the solution process. In the context of fully 

coupled dG formulations of the INS equations efficiency might be 

pursued with ad hoc preconditioners, for example a recent work 

by Botti et al. [5] reports promising results by means of agglomer- 

ation based h -multigrid solution strategies. 

In the present work we introduce the exact and two approxi- 

mate Riemann solvers for the artificial compressibility perturbation 

of the 1D variable density incompressible Euler equations. In the 

approximate Riemann solvers a transport equation for the density 

unknown was added to the constant density artificial compress- 

ibility equations devised by Elsworth and Toro [8] . Then we con- 

sider two choices for the density in the momentum equation, i.e. , 

either a constant reference density or the variable physical density. 
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Table 1 

Sets of equations for the three Riemann solvers here considered. 

CDRS SDRS ERS 

1 

ρ0 c 2 
∂ p 

∂t 
+ 

∂u 

∂x 
= 0 

1 

ρ0 c 2 
∂ p 

∂t 
+ 

∂u 

∂x 
= 0 

1 

ρ0 c 2 
∂ p 

∂t 
+ 

∂u 

∂x 
= 0 

∂(ρ0 u ) 

∂t 
+ 

∂(ρ0 u 
2 + p) 

∂x 
= 0 

∂(ρu ) 

∂t 
+ 

∂(ρu 2 + p) 

∂x 
= 0 

∂(ρu ) 

∂t 
+ 

∂(ρu 2 + p) 

∂x 
= 0 

∂ρ

∂t 
+ u 

∂ρ

∂x 
= 0 

∂ρ

∂t 
+ u 

∂ρ

∂x 
= 0 

∂ρ

∂t 
+ 

∂(ρu ) 

∂x 
= 0 

In the former case velocity and pressure solutions are decoupled 

from density fluctuations while in the latter velocity and pressure 

are influenced by density jumps across the contact discontinuity. 

In the exact Riemann solver the conservative continuity equation is 

considered in place of the density transport equation. Only in this 

setting the density solution might differ from the left and right 

states. Interestingly, the exact Riemann solver admits an explicit 

solution, therefore it is also the most efficient. The solvers are de- 

signed to be applied in the direction normal to element faces and 

are well suited to be employed in the context of high–order dG 

discretizations. To this end we provide a multidimensional exten- 

sion for each of the proposed solvers. 

The paper is organized as follows: in Section 2 we present the 

two approximate and the exact Riemann solvers for 1D problems. 

In Section 3 we derive the Riemann solvers for x -split 3D prob- 

lems. In Section 4.1 we consider five benchmark Riemann prob- 

lems to compare the numerical fluxes provided by exact and ap- 

proximate Riemann solvers. Next we turn to the dG discretization 

of the variable density INS equations, where artificial compressibil- 

ity is introduced only at the flux level. The convergence properties 

of the dG formulation are assessed on the 2D Kovasnzay test case 

in Section 4.2 . Finally, the robustness of the formulation is assessed 

considering the Rayleigh–Taylor instability problem in Section 4.3 . 

2. The 1D Riemann problem 

The 1D variable density incompressible Euler equations, modi- 

fied by means of an artificial compressibility term, are 

1 

ρ0 c 2 
∂ p 

∂t 
+ 

∂u 

∂x 
= 0 , 

∂(ρu ) 

∂t 
+ 

∂(ρu 

2 + p) 

∂x 
= 0 , 

∂ρ

∂t 
+ 

∂(ρu ) 

∂x 
= 0 , 

(1) 

where p is the pressure, u the velocity and ρ is the density. Here 

c ∈ R \ { 0 } is the artificial compressibility coefficient and ρ0 = 1 is 

a reference density. 

We wish to find the solution of the 1D Riemann problem 

p, u, ρ = 

{
p L , u L , ρL x < x 0 , t = 0 

p R , u R , ρR x > x 0 , t = 0 

, (2) 

for model (1) . Subscripts L and R distinguish initial left and right 

states respectively, where x 0 is the position of the initial disconti- 

nuity. The solution consists of four states separated by two acoustic 

waves, hereafter called “left” and “right” waves, and a contact dis- 

continuity (see Fig. 1 ). Left and right waves can be either rarefac- 

tions or shocks depending on the initial values and across them all 

the unknowns can change. Instead, in the region between waves, 

called star region ( � ), pressure and normal velocity are constant and 

only the density can vary. 

In Table 1 we report, for the sake of comparison, the sets of 

equations for the Riemann solvers considered in this work. The 

first two solvers (CDRS and SDRS) are exact solvers based on mod- 

ified sets of equations as compared to (1) and thus they give rise 

to approximate solutions. 

Fig. 1. Structure of the Riemann problem solution in the x − t plane. 

2.1. Constant density approximate Riemann solver (CDRS) 

The CDRS is the Riemann solver proposed by Elsworth and Toro 

[8] for constant density flows and based on the following hyper- 

bolic set of equations 

1 

ρ0 c 2 
∂ p 

∂t 
+ 

∂u 

∂x 
= 0 , 

∂(ρ0 u ) 

∂t 
+ 

∂(ρ0 u 

2 + p) 

∂x 
= 0 . 

(3) 

Here, to account for density variations, we simply augment the 

original set of equations with the density transport equation 

Dρ

Dt 
= 

∂ρ

∂t 
+ u 

∂ρ

∂x 
= 0 , (4) 

which allows to consider the density as a purely advected property, 

i.e. , a property that can change only across the contact discontinu- 

ity 

ρ�L = ρL , and ρ�R = ρR . (5) 

Note that, according to Eq. (3) , a reference density ρ0 = 1 is em- 

ployed in the momentum equation. As a consequence pressure and 

velocity solutions inside the star region are decoupled from the 

density fluctuations and can be obtained by means of the solver 

of Elsworth and Toro [8] . 

2.2. Switched density approximate Riemann solver (SDRS) 

As for the CDRS the SDRS enforces the divergence free con- 

straint inside the continuity equation of the system (1) . Accord- 

ingly, the density is a purely advected property, and its solution 

inside the star region reads 

ρ�L = ρL , and ρ�R = ρR . (6) 

Since the density can vary only across the contact discontinuity, 

the first two equations of (1) can be rewritten as 

1 

ρ0 c 2 
∂ p 

∂t 
+ 

∂u 

∂x 
= 0 , 

∂ ˆ ρu 

∂t 
+ 

∂( ̂  ρu 

2 + p) 

∂x 
= 0 , 

(7) 

where the constant density ˆ ρ takes the left/right value on the 

left/right of the contact discontinuity. As a consequence, even if the 
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