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a b s t r a c t 

In this paper we analyze the use of time splitting techniques for solving shallow water equations. We 

discuss some properties that these schemes should satisfy so that interactions between the source term 

and the shock waves are controlled. This work shows that these schemes must be well balanced in the 

meaning expressed by Greenberg and Leroux [7]. More specifically, we analyze in what cases it is enough 

to verify an Approximate C-property and in which cases it is required to verify an Exact C-property (see 

[1, 2]). We also discuss this technique in two dimensions and include some numerical tests in order to 

justify our argument. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Time splitting schemes on balance laws (conservation laws with 

source terms) is a useful technique for separately treating the ho- 

mogeneous and the general equation of a system of differential 

equations with source term. A prototype, in two-dimensional space 

and under certain regularity hypotheses, is given by the following 

system of partial differential equations { 

W (x, y, t) t + F 1 (W (x, y, t)) x + F 2 (W (x, y, t)) y 
= G (x, y, W (x, y, t)) , 

W (x, y, 0) = W 0 (x, y ) , (x, y, t) ∈ R 

2 × R 

+ . 
(1) 

where W : R 

2 × R 

+ → R 

m is the vector of conserved variables, 

F 1 : R 

m → R 

m and F 2 : R 

m → R 

m are the vectors of fluxes and 

G : R 

m +2 → R 

m is the source term (usually m ≥ 2). 

In this paper, we clarify a controversy related on using or not 

time splitting techniques on hyperbolic equations involving solu- 

tions with shock waves and in particular on shallow water equa- 

tions. 

In order to solve the system (1) , a time splitting scheme con- 

sists of solving consecutively the homogeneous equation 

W (x, y, t) t + F 1 (W (x, y, t)) x + F 2 (W (x, y, t)) y = 0 , (2) 

and the ordinary differential equation 

W (x, y, t) t = G (x, y, W (x, y, t)) . (3) 

LeVeque notices in [13,14] that such schemes can easily fail by 

the presence of shock waves in solving the system (2) . These shock 
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waves involve large changes in the solution which can not be cap- 

tured in solving (3) . 

Ma, Sun and Yin in [16] use a time integrating scheme with 

two-step predictor-corrector sequence quite successfully. Striba 

uses splitting techniques for the term that represent the Corio- 

lis acceleration [18] in meteorology models and Wicker and Ska- 

marock [21] use those techniques for integrating elastic equations. 

Bermúdez and Vázquez (see [1,2] ) introduce the concept of ex- 

act C-property and approximate C-property in order to identify nu- 

merical schemes with an acceptable level of accuracy in the reso- 

lution of shallow water equations (well-balanced scheme). In ad- 

dition, Greenberg and Leroux [7] propose a numerical scheme that 

preserves a balance between the source terms and internal forces 

due to the presence of shock waves. 

Another point of view is provided by Lubich [15] who gives 

an error analysis of Strang-type splitting integrators for nonlinear 

Schrödinger equations. 

Holdahl, Holden and Lie [8] use an adaptive grid refinement and 

a shock tracking technique to construct a front-tracking method for 

hyperbolic conservation laws. They combine the operator splitting 

to study shallow water equations. Holden, Karlsen, Risebro and Tao 

[10] show that the Godunov and Strang splitting methods converge 

with the expected rates if the initial data are sufficiently regular. 

The reader can find a deep study of splitting methods for partial 

differential equations in [9] , where some analysis of conservation 

and balance laws are included. 

We analyze the above controversy with the support of the ideas 

presented in [1,2,7] . From these studies, it follows that the nu- 

merical schemes used in solving (2) and (3) cannot be arbitrary, 

even though they have a high degree of accuracy. These must be 
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Fig. 1. Shallow water variables. 

balanced so that interactions between the source term in (3) and 

the shock waves in (2) are controlled. In this framework, we will 

analyze conditions to be satisfied by splitting schemes in order to 

avoid spurious oscillations which are created in this type of equa- 

tions. More specifically, we will explain when it is enough to im- 

pose an approximate C-property and when we need to impose an 

exact C-property . 

2. The one dimensional shallow water equations 

In this section, we only reproduce the most significant aspects 

of the one-dimensional case, since it has already been well studied 

in [17] and the interested reader can easily access it. 

2.1. Governing equations 

We consider in Eq. (1) the following functions: 

W = 

(
h 

q 

)
, F (W ) = 

( 

q 

q 2 

h 

+ 

1 

2 

gh 

2 

) 

, G (x, W ) = 

(
0 

−ghb ′ (x ) 

)
. (4) 

The unknowns of the problem are: the water height is h and 

the flow per unit length is q = hu. Here u is the average vertical 

speed in the direction of the axis x (see Fig. 1 ). F is the flux of 

conservative variables and g = 9 . 81 ms −2 is the acceleration due to 

gravity. The source term G models the bottom variation given by 

the function b ( x ). 

Let us consider numerical solvers based upon the decomposi- 

tion F (W ) x = A (W ) W x , where 

A (W ) = 

( 

0 1 

− q 2 

h 

2 
+ gh 2 

q 

h 

) 

is the Jacobian matrix of F (W ) . 

(5) 

So that, system (1) –(4) is hyperbolic ( h > 0), then A = X �X −1 , 

where 

� = 

(
λ1 0 

0 λ2 

)
, X = 

(
1 1 

λ1 λ2 

)
, X 

−1 = 

1 

λ2 − λ1 

(
λ2 −1 

−λ1 1 

)
, 

(6) 

where λ1 = 

q 

h 
+ 

√ 

gh and λ2 = 

q 

h 
−
√ 

gh . 

Bermúdez and Vázquez [2] characterize the good behavior of 

the numerical scheme in the manner in which the scheme ap- 

proximates a steady solution representing the state of water at 

rest. They introduce the stationary problem ( Problem SP ) given 

by q (x, t) = 0 and h (x, t) = C − b(x ) an independent function of t . 

Now, they define the following conservation properties: 

Exact C-property . We say that a scheme satisfies the exact C- 

Property if it is exact when applied to the Problem SP. 

Approximate C-property . We say that a scheme satisfies the ap- 

proximate C-Property if it is accurate to the order �( �x 2 ) when 

applied to Problem SP. 

It is well known that if a numerical scheme does not satisfy any 

of these conservation properties, then the propagation of spurious 

oscillations is also present in non stationary problems. 

2.2. Central numerical schemes 

In order to admit discontinuous solutions (see [19] ), we con- 

sider the following integral formulation: ∫ 
(W dx − F (W ) dt) = 0 . (7) 

Numerical schemes generally use (7) in order to approximate 

(2) . To do that, it is introduced a control volume in the space ( x, 

t ) of dimensions �x ×�t . Next, the integral (7) is evaluated in this 

control volume ∫ x j+1 / 2 

x j−1 / 2 

(
W (x, t n +1 ) − W (x, t n ) 

)
dx + 

∫ t n +1 

t n 

(
F (W (x j+1 / 2 , t)) 

−F (W (x j−1 / 2 , t)) 
)
dt = 0 . 

Dividing by �x we obtain 

1 

�x 

∫ x j+1 / 2 

x j−1 / 2 

W (x, t n +1 ) dx = 

1 

�x 

∫ x j+1 / 2 

x j−1 / 2 

W (x, t n ) dx −

− �t 

�x 

[ 
1 

�t 

∫ t n +1 

t n 
F (W (x j+1 / 2 , t)) dt − 1 

�t 

∫ t n +1 

t n 
F (W (x j−1 / 2 , t )) dt 

] 
, 

where we have also introduced division by �t in order to consider 

integral averages in time of the flux. 

Thus, we deduce the conservation formula 

W 

n +1 

j = W 

n 

j −
�t 

�x 
[ F j+1 / 2 − F j−1 / 2 ] , (8) 

where W 

n 

j is the cell average defined as 

W 

n 

j = 

1 

�x 

∫ x j+1 / 2 

x j−1 / 2 

W (x, t n ) dx 

at time t = t n inside the interval I j = [ x j−1 / 2 , x j+1 / 2 ] whose length 

is �x = x j+1 / 2 − x j−1 / 2 . 

The flux in (8) can be interpreted as the average in time of the 

physical flux, i.e., 

F j+1 / 2 ≈
1 

�t 

∫ t n +1 

t n 
F (W (x j+1 / 2 , t )) dt . 

Conservative numerical methods for (2) are based in (8) , and 

they are determined by the expression of the numerical flux F j+1 / 2 . 

In the first step of the splitting procedure, we solve (2) at 

each time step. To do that, and for the sake of simplicity, we 

consider the Q -scheme of van Leer (see [20] ) which uses a 

matrix Q satisfying some properties and the numerical fluxes 

F j−1 / 2 = φ(W 

n 
j−1 

, W 

n 
j 
) , F j+1 / 2 = φ(W 

n 
j 
, W 

n 
j+1 

) , where the numerical 

flux function φ is given by 

φ(U, V ) = 

F (U) + F (V ) 

2 

− 1 

2 

| Q( U , V ) | ( V − U) . 

A possible choice of the matrix Q can be the Jacobian (5) of 

the system (4) evaluated at the arithmetic mean, i.e. Q(U, V ) = 

A 

(
U+ V 

2 

)
. So that, ∣∣∣Q(W 

n 
j± 1 

2 

) 

∣∣∣ = X (W 

n 
j±1 , W 

n 
j ) 
∣∣�(W 

n 
j±1 , W 

n 
j ) 
∣∣X 

−1 (W 

n 
j±1 , W 

n 
j ) , (9) 
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