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a b s t r a c t 

Hypersonic vehicles experience a wide range of Knudsen number regimes due to changes in atmospheric 

density. The Direct Simulation Monte Carlo (DSMC) method is physically accurate for all flow regimes, 

however it is relatively computationally expensive in high density, and low Knudsen number regions. 

Recent advances in the Fokker–Planck (FP) kinetic models have addressed this issue by approximating 

the particle collisions involved in the Boltzmann collision integral with continuous stochastic processes. 

Furthermore, a coupled FP–DSMC solution method has been devised aiming at a universally efficient yet 

accurate solution algorithm for rarefied gas flows. Well known Lofthouse case of a generic hypersonic 

flow about a cylinder (Mach 10, Kn 0.01, Argon) is selected to investigate the performance of a hybrid 

FP–DSMC implementation. The effect of molecular potential on the accuracy of the scheme is mainly an- 

alyzed. Furthermore, spatial resolution of cubic FP scheme is studied. Finally, detailed study of accuracy 

and efficiency of FP–DSMC hybrid scheme is discussed. It is found that the presented adaptive grid to- 

gether with the FP–DSMC method results in a factor of six speed up for considered hypersonic flow about 

a cylinder. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Rarefied gas dynamics is concerned with flows at low density 

where the molecular mean free path is not negligible. Under these 

conditions, the continuum assumption breaks down and the gas no 

longer behaves according to the conventional hydrodynamics. Im- 

portant modifications in the aerodynamic and heat transfer char- 

acteristics occur which are associated with the basic molecular 

structure of the gas. The degree of rarefaction is generally char- 

acterized through the Knudsen number Kn = λ/ L , where λ is the 

mean free path of the gas and L is a characteristic length scale. 

The flow regime is classified as free molecular, transitional, and 

continuum, depending on the Knudsen number [1] . It is generally 

accepted that free molecular flow is an accurate assumption for 

Kn ≥ 10, whereas Kn � 1 chracterizes the hydrodynamic limit. In 

the latter case, one can disregard microscopic phenomena in the 

gas and consider only macroscopic fields such as density, velocity 

and temperature as the relevant physical quantities. Due to the suf- 

ficiently large number of collisions the distribution F(V ) of particle 

velocity remains close to an equilibrium distribution, and the con- 

ventional Navier–Stokes or Euler equations are appropriate models. 
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Yet as the Knudsen number increases, the local velocity distribu- 

tion may depart significantly from equilibrium, and the flow may 

not be accurately described by the Navier–Stokes equations. There- 

fore, the Boltzmann equation should be regarded as the governing 

model [1] . The Boltzmann equation provides the evolution of the 

velocity distribution according to 
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with D( . . . ) / D t = ∂ (...)/ ∂ t+ V i ∂ (...)/ ∂ x i + G i ∂ (...)/ ∂ V i . Here the m is 

the mass of a single gas molecule, the velocity pair ( V 

∗
1 
, V 

∗) is the 

post collision state of the pair ( V 1 , V ), σ is the differential cross 

section of the collision, θ the solid angle which provides the orien- 

tation of the post collision relative velocity vector and g = | V − V 1 | . 
Furthermore, G represents the external force normalized by the 

molecular mass. For engineering applications, the direct numerical 

solution of the Boltzmann equation may become computationally 

demanding, due to non-linearity of the collision operator and the 

high dimensionality of the solution domain. 

Alternative to the direct discretization of the distribution func- 

tion, particle Monte-Carlo approximations can deal with high di- 

mensionality very effectively. In particular, solution algorithms 

based on DSMC, employ computational particles and Monte-Carlo 
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techniques to simulate the gas flow according to the Boltzmann 

equation. As a stochastic particle method, DSMC is the most ma- 

ture and commonly used high fidelity simulation method for rar- 

efied gas flows [1] . The DSMC method has evolved over 50 years 

into a powerful numerical technique for the computation of ther- 

mochemical non-equilibrium gas flows [2–4] . There exists a num- 

ber of implementations of DSMC method, including DS2V/3V (G.A. 

Bird, Australia), MONACO (University of Michigan, USA), SMILE 

(Khristianovich Institute of Theoretical, Russia), DAC (NASA Langley 

Center, USA), MGDS (University of Minnesota, USA), HAP (Airforce, 

USA), openFoam (dsmcFOAM), SPARTA (Sandia national laborato- 

ries, USA) [5–11] . More recently, SPARTA 

1 was developed at Sandia 

National Laboratories as a general-purpose 3D DSMC simulator de- 

signed to run efficiently on parallel computers. It is an open-source 

code, distributed freely under the terms of the GNU Public License 

and was released in 2014 [11] . 

While physically accurate for ideal gas flows over the entire 

range of rarefaction, standard DSMC becomes expensive as the flow 

approaches the hydrodynamic limit. Therefore, DSMC may not be 

an appropriate tool due to the computational expense for flows 

with a wide range of local Knudsen number, such as hypersonic 

entry flows. This gives a very good motivation for hybrid meth- 

ods, in which different models are employed for different Knud- 

sen regimes. Traditional hybrid methods rely on coupling contin- 

uum model, mainly the Navier–Stokes equations, with the high fi- 

delity non-equilibrium solvers [12,13] . Continuum Computational 

Fluid Dynamics (CFD) method is assigned to the near equilibrium 

regions while DSMC is only applied to high Knudsen sub-domains. 

However, the CFD-DSMC scheme deals the two-way coupled in- 

formation transfer between CFD and DSMC domains. It is com- 

plex and requires significant algorithm developments. In particu- 

lar, feeding the noisy Monte-Carlo type information from the DSMC 

solution to the boundary of the continuum solver is troublesome. 

Another type of hybrid approach is given by coupling DSMC 

with near-equilibrium particle methods [14–16] . These approaches 

rely on DSMC type particle updates at high Knudsen number 

regimes whereas continuum particle updates are enforced else- 

where. These methods can handle very strong coupling between 

the two flow regimes. They allow simpler code development, as 

there is no need to integrate two different simulation schemes in 

the same code. However, these techniques are prone to significant 

errors associated with numerical diffusion, including effects of ar- 

tificial viscosity, thermal conductivity and mass diffusion resulting 

from free-molecular fluxes between adjacent cells [17] . 

Recently, an alternative stochastic particle scheme was pro- 

posed by Jenny et al. and Gorji et al., where the collision process 

underlying the Boltzmann equation is approximated by a Fokker–

Planck (FP) kinetic model [18–20] . In the cubic FP approach, the 

Boltzmann equation is reduced to a drift and diffusion stochastic 

process, where the particles follow independent stochastic paths. 

That leads to a high computational efficiency at low Knudsen num- 

bers where the flow is dominated by intermolecular collisions. 

The drift and diffusion coefficients in the cubic FP model are 

then computed based on consistency relations with respect to the 

Boltzmann collision integral. Furthermore, the hybrid FP–DSMC ap- 

proach was subsequently developed providing an easy to develop, 

accurate yet efficient simulation tool [21–23] . However, the perfor- 

mance and efficiency of the FP–DSMC approach has to be further 

analyzed especially with regard to application of molecular poten- 

tials. This is in particular important since it has been shown that 

the cubic FP model does not provide accurate shock profiles unless 

Maxwell type molecules are assumed [24] . 
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This paper aims for a detailed study of FP–DSMC simulations 

with focus on the effect of molecular potentials on the accuracy 

and efficiency of the model. First, the standard DSMC and cubic FP 

results are compared with each other in order to investigate the 

influence of molecular potential on hypersonic flow phenomena. 

Second, the requirement for the FP spatial resolution is discussed 

based on the maximum gradient of macroscopic values. The FP so- 

lutions with three different grid configurations are compared. Fi- 

nally, the FP–DSMC hybrid simulation are performed with Maxwell 

and VHS molecular models, using two different grid configurations. 

2. Numerical methods 

2.1. DSMC 

The main idea behind DSMC is to employ computational par- 

ticles as Monte-Carlo realizations of the distribution. These parti- 

cles, which can be regarded as representatives of a huge number 

of real molecules, evolve in a two step algorithm consistent with 

the Boltzmann equation. More precisely, the main principle of the 

DSMC is the splitting of the evolution into two sequential stages: 

free molecular translation and intermolecular collisions. The col- 

lision pairs are picked from the same computational cell. There- 

fore, the cell sizes should resolve the local mean free path of the 

gas. Accordingly, the splitting requires that the time step size hon- 

ours the mean collisions time. The DSMC algorithm consists of 

translational movement of particles, application of boundary con- 

ditions, calculation of collisions, and sampling particle quantities 

for macroscopic flow variables [1,4] . Details are summarized in the 

flowchart 2 . The DSMC simulations conducted in the present arti- 

cle are performed with SPARTA. 

2.2. Cubic Fokker–Planck model 

The efficiency of the FP based particle simulations can be 

achieved due to the fact that the resulting model equations are 

continuous stochastic differential equations in the velocity space. 

In the following we review the basic elements of the cubic FP 

model (for more details see e.g. [19] ). The FP kinetic model is an 

approximation of the Boltzmann collision operator (
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by a drift-diffusion process in the phase space. Here, A and D rep- 

resent the drift and diffusion coefficients which in general may be 

functions of F and V . In the cubic FP model, the drift coefficient is 

derived from a polynomial ansatz 
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as a function of the fluctuating velocity v ′ . The coefficients c and γ
are derived such that exact relaxation of the viscous stresses σ and 

heat fluxes q are obtained for Maxwell molecules. The cubic coeffi- 

cient � ensures stability of the equation as v ′ approaches infinity. 

The diffusion coefficient, D is found to be: 

D = 

√ 

2 kT 

mτ
(4) 

based on the Langevin equation [18] . Time scale τ = 2 μ/p is em- 

ployed in the cubic FP model which is proportional to the mean 

collision time of Maxwell molecules. Since the relaxation time 

scale τ depends only on the equilibrium quantities, certain limi- 

tations for realistic molecular potentials will be expected. 

Eqs. (3) and (4) already close the cubic FP approximation. But 

in order to develope a particle based numerical scheme, the kinetic 
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