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a b s t r a c t 

In addition to implicitly resolving the velocity pressure coupling at interior faces, it is also critical for 

a coupled solver to implicitly resolve this coupling for boundary faces. Failure to account for this leads 

to substantial degradation in the convergence characteristics of the solver. In this paper, details on the 

implicit treatment of boundary conditions for a coupled solver are presented in the context of the 

OpenFOAM 

® framework. The boundary conditions presented include two geometric conditions namely, 

cyclicMMI and symmetry condition and a number of physical boundary conditions (inlet, outlet, and 

wall). The treatment is illustrated with modification to the boundary element coefficients and its effec- 

tiveness demonstrated for the case of “NASA Rotor 37”, a standard validation case. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the pressure-based finite volume method used for Compu- 

tational Fluid Dynamics (CFD) applications, two approaches have 

been followed to resolve the velocity–pressure coupling. In the 

first, denoted by the segregated approach, the velocity compo- 

nents and pressure are solved sequentially one at a time with the 

inter-equation influences treated explicitly. In the second, denoted 

by the coupled approach, the velocity and pressure equations are 

solved simultaneously with the inter-equation influences treated 

implicitly. 

The SIMPLE family of algorithms [1–12] that are at the core 

of the segregated approach have been quite popular and have 

been used quite successfully over the last few decades to solve a 

wide range of flow problems that involve incompressible and com- 

pressible flows [13,14] , single and multiphase flows [15–20] , lam- 

inar and turbulent flows, free-surface flows [21,22] , and particle 

laden flows [19] to cite a few. This popularity was partially due 

to their lower storage requirement in addition to relatively sim- 

ple and more forgiving implementation as compared to coupled 

approach. The downside, however, was that the segregated algo- 

rithms fail to scale linearly with grid size, and are very sensitive to 

initial conditions. This has meant that despite their wide adoption 

and many successes, they continue to suffer from a breakdown in 

convergence rate when applied to the solution of large scale prob- 

lems, and decreased robustness associated with sensitivity to ini- 
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tial conditions when simulation complex physics. This failure to 

scale linearly with grid size is due to the explicit fashion in which 

the segregated algorithms resolve the velocity–pressure coupling 

in the discretized Navier–Stokes equations, which in compressible 

flows extends to a pressure–velocity–density coupling. 

The coupled approach requires a more complex set of ingredi- 

ents to work properly, but when it does it yields drastically in- 

creased robustness and near linear scaling with mesh size, a great 

advantage when dealing with complex physics and/or large scale 

simulation problems, both of which are becoming more common 

nowadays. With linear scaling the solver yields nearly constant 

CPU time per element as mesh size is increased, two, four, ten 

or even thirty fold [23] . This means that the performance differ- 

ence between segregated and coupled solver increases substan- 

tially with grid size, with ratio of 6–50 times reported on some 

problems [24] . 

It is worth noting that the Imperial College CFD group [1,2] , 

which developed the SIMPLE algorithm, had initially developed a 

coupled pressure-based solver, SIVA, [25] . The SIVA algorithm was 

later overshadowed by the SIMPLE algorithm that combined low 

memory requirement with coding simplicity, two substantive ad- 

vantages given the state of computer technology at that time. 

Based on the experience of the authors, a successful implemen- 

tation of a coupled approach, requires a set of basic ingredients: 

(i) a diligent linearization of the momentum and pressure equa- 

tions [25–30] yielding an extended system of coupled equations; 

(ii) a highly efficient and scalable multigrid linear solver to solve 

this extended system of equations [31] ; and (iii) a fully implicit im- 

plementation of boundary conditions. While the first two features 
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Nomenclature 

a uu 
C 

, a u v 
F 

, .. coefficients in the discretized equations 

B source term in the momentum equation 

b 
φ
C 

source term in the discretized equations 

C main grid point 

d CF vector joining the grid points C and F 

D operator used in the pressure equation 

E component of the surface vector in the direction 

of d CF 

F refers to neighbour of the C grid point 

g geometric interpolation factor 

i , j unit vectors in the x - and y -direction, respec- 

tively 

˙ m f mass flow rate at control volume face f 

p pressure 

C main grid point 

Q general source term 

RMS root mean square residuals 

S surface vector 

t time 

T Component of the surface vector normal to S 

u,v velocity components in x - and y -direction, re- 

spectively 

v velocity vector 

V cell volume 

Greek symbols 

μ dynamic viscosity 

ρ fluid density 

τ deviatoric stress tensor 

Subscripts 

C refers to main grid point 

f refers to control volume face 

F refers to the F grid point 

nb refers to values at the faces obtained by interpola- 

tion between C and its neighbours 

NB refers to the neighbours of the C grid point 

Superscripts 

p refers to pressure 

u refers to the u -velocity component 

v refers to the v -velocity component 
◦ refers to value at the previous time step 

∗ refers to value at the previous iteration 

∗∗ refers to value at the current iteration 

— refers to an interpolated value 

have been summarized by the authors in several papers [25–31] , 

the last component has been rarely addressed on its own and has 

generally received a cursory overview. 

To this end, the aim of the paper is to report on the fully im- 

plicit implementation of boundary conditions in a coupled solver. 

The details are presented in the context of the OpenFOAM 

® frame- 

work. The two types of boundary conditions encountered in solv- 

ing flow problems, namely physical and geometric boundary con- 

ditions [32] , are considered. Physical boundary conditions repre- 

sent the conditions imposed at inlets, outlets, and walls. Geometric 

boundary conditions are generally used to simplify the geometric 

domain, such as the symmetry boundary condition and the various 

types of cyclic boundary conditions (rotational, translational, etc.). 

In the remainder of this article, the governing equations and 

the coupled discretization approach are first briefly reviewed. The 

two types of boundary conditions encountered in solving flow 

problems, namely physical (inlets, outlets, and walls) and geomet- 

ric (symmetry, cyclic translational, and cyclic rotational) boundary 

conditions [32] are then derived in details and implementation is- 

sues clarified. To assist in this endeavour, the topology structures 

used in the OpenFOAM 

® framework for the representation of the 

discretized equations in the form of upper, lower, and diagonal ar- 

rays are also presented. Finally, the approach is evaluated using a 

test case that incorporates many of the treated boundary condi- 

tions. 

2. Governing equations 

The mass, momentum, and energy equations governing fluid 

flow and heat transfer problems are written as 

∂ρ

∂t 
+ ∇ · ( ρv ) = 0 (1) 

∂ [ ρv ] 

∂t 
+ ∇ · { ρvv } = −∇p + [ ∇ · τ ] + f b (2) 

∂ 

∂t 
( ρc p T ) + ∇ · [ ρc p v T ] = ∇ · [ k ∇T ] + ρT 

D c p 

Dt 

+ 

Dp 

Dt 
− 2 

3 

μ� + μ� + 

˙ q V (3) 

where v , p, T , ρ, f b , c p , k, μ, and ˙ q V represent the velocity vector, 

pressure, temperature, density, body force per unit volume, specific 

heat at constant pressure, thermal conductivity, dynamic viscosity, 

and heat generation per unit volume, respectively. In addition, τ
is the deviatoric stress tensor that can be written for a Newtonian 

fluid as 

τ = μ
(∇v + ( ∇v ) 

T 
)

− 2 

3 

μ( ∇ · v ) (4) 

Since the energy equation is solved after simultaneously solving 

the continuity and momentum equations, its discretization and the 

implementation of its boundary conditions follow the segregated 

approach [32] and will not be discussed here. Therefore, the paper 

concentrates on the implementation of boundary conditions for the 

continuity and momentum equations in the coupledFOAM solver 

for both incompressible and compressible flows. For compressible 

flow, an equation of state relating density to temperature (T ) and 

pressure is required, which for an ideal gas is given by 

ρ = 

P 

RT 
= C ρ p (5) 

where R is the gas constant. 

3. The discretized equations 

The fully implicit coupled discretization has been covered in de- 

tails in a number of papers [24–30] . Only the basic features of the 

coupled discretization will be described in this section. 

For the discretized momentum equations can be written in vec- 

tor form as follows: 

a vv 
C v C + 

∑ 

F = NB (C) 

a vv 
F v F + a v p 

C 
p C + 

∑ 

F = NB (C) 

a v p 
F 

p F = b 

v 
C (6) 

where the coefficients are given by 

a vv 
C = 

ρ∗
C V C 

�t 
+ 

∑ 

f= nb(C) 

(
μ f 

E f 

d CF 

+ 

∥∥ ˙ m 

∗
f , 0 

∥∥)

a vv 
F = −μ f 

E f 

d CF 

−
∥∥− ˙ m 

∗
f , 0 

∥∥
a v p 

C 
= g C S f 

a v p 
F 

= g F S f 
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