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a b s t r a c t 

This work introduces a new error indicator which can be used to determine areas of insufficient numeri- 

cal resolution in unfiltered finite difference simulations. The background behind the methodology is that 

smaller scales (i.e. the flow features with higher wave numbers) are physically characterised by a smaller 

energy content in comparison with larger scales. This energy should decrease with increasing wavenum- 

ber at a minimum rate; if this rate is not attained it likely means that the smaller scales are not being 

properly resolved on the computational grid of solution points. An approach using spectral techniques is 

used to formulate two varieties of the error indicator – one integer-valued and one floating point-valued. 

These values are computed at a finite number of ‘blocks’ which span the domain. The indicator is imple- 

mented within the OpenSBLI finite difference-based modelling framework, and evaluated in the context 

of a three-dimensional Taylor-Green vortex problem and flow past a V2C laminar flow aerofoil. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Computational grids are at the core of many numerical mod- 

els. They comprise a set of points upon which the governing equa- 

tions are solved. One of the crucial constraints of grid generation 

is that small-scale structures must be sufficiently well resolved by 

the grid, since any errors (introduced through numerical disper- 

sion and dissipation, as well as nonlinear effects such as aliasing) 

can cause the simulation to become inaccurate and unstable [1] . 

Adopting a uniformly-fine grid to ensure this constraint is satisfied 

often results in a large number of superfluous grid points, which 

is detrimental to the model’s computational efficiency. At the same 

time, it is often not possible to know a priori exactly where high 

resolution needs to be placed in the domain, particularly when 

dealing with transient and turbulent dynamics frequently encoun- 

tered in real-world applications. The formulation of a posteriori er- 

ror estimators and indicators [2–6] , and their coupling with adap- 

tive grid refinement methods [7–13] , has therefore attracted a con- 

siderable amount of attention over the last few decades. 

The current work is focussed on finite difference solutions of 

the compressible Navier–Stokes equations in the absence of ex- 
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plicit filtering or artificial dissipation. Such an approach is com- 

monly used for DNS [14] . A feature of under-resolved regions of 

flow is the appearance of grid-to-grid point oscillations, usually 

first apparent in derivative quantities such as vorticity or dilatation 

rate. Typically the appearance of such numerical errors/oscillations 

is used to decide when and where grid refinement is required. 

This work aims to quantify and calibrate these features of under- 

resolution such that the grid refinement process can ultimately be 

automated. 

A new error indicator, based on spectral techniques using small- 

domain Fourier transforms, is presented herein. It does not attempt 

to quantify the solution error, but instead estimates the severity of 

any under-resolution that occurs in the solution field. The indicator 

is implemented in the OpenSBLI finite difference modelling frame- 

work [15] . Section 2 describes the error indicator in further detail. 

It is then evaluated in Section 3 by considering three-dimensional 

simulations of the Taylor–Green vortex problem [16] and flow past 

a V2C laminar aerofoil (see e.g. [17] ). Some conclusions are drawn 

in Section 5 . 

2. Error indicator 

The error indicator considers a finite number of small cubes 

which together span the whole 3D domain. For each N 

3 
e block, and 

for each line of N e points within it, various Fourier amplitudes of 
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a user-specified solution field are computed. These amplitudes are 

subsequently averaged over N 

2 
e lines to determine the anisotropic 

error ‘severity’ values. 

The first step to computing the error indicator is to apply a 

Hamming window to the solution field y , in order to ensure its 

smoothness and periodicity for Fourier analysis. Thus for each line 

of N e solution points in each direction: 

y j = y j 

(
0 . 54 − 0 . 46 cos 

(
2 π j 
N e 

))
0 . 54 

, (1) 

where y j is the j th component of the solution field y in the line of 

solution points under consideration. 

The Fourier amplitudes (proportional to the square root of the 

spectral energy) for selected modes/wavenumbers N e /2, N e /4 and 

N e /8 of the solution field are then computed, for each N 

3 
e block. 

In order to avoid doing a computationally intensive Fourier trans- 

form each time, the amplitudes are reconstructed by using simple 

summations, S : 

S 2 = 

N e −1 ∑ 

j=0 

(−1) j y j , (2) 

S 4 = 

N e −1 ∑ 

j=0 

(−i) j y j , (3) 

S 8 = 

N e −1 ∑ 

j=0 

exp 

(
−π

4 

i 

) j 

y j , (4) 

where i = 

√ −1 . These values were checked for correctness against 

a fast Fourier transform. 

With an increasing mode/wavenumber k , we desire the spectral 

energy E ( k ) (and therefore the mode amplitude Y ( k )) to decrease 

at a minimum rate, such that the smallest scales have the lowest 

energy content. An increase in E ( k ), for example due to aliasing 

errors arising from non-linear terms, is likely to mean that we are 

not resolving the small scales well enough. Determining where this 

increase occurs in the domain facilitates the dynamic focussing of 

resolution in that area. To this end, the error indicator presented 

here is based on detecting whether the spectrum decay rate is 

worse than some prescribed value. 

Two versions of the error indicator, denoted I i and I f , were de- 

veloped; I i is integer-valued while the other, I f , is floating-point- 

valued. These are defined as 

I i = 

{
1 , if A 2 > A 4 + ε 
0 , otherwise 

+ 

{
1 , if A 4 > A 8 + ε 
0 , otherwise 

+ 

{
1 , if A 2 > A 8 + ε 
0 , otherwise 

(5) 

I f = log 

(
1 + � A 2 

A 4 + ε 
� + � A 4 

A 8 + ε 
� + � A 2 

A 8 + ε 
� 
)

, (6) 

where � . . . � is a ‘floor’ operation, and the values A 2 , A 4 and A 8 are 

defined as 

A 2 = 2 

−2 r 

∣∣∣ S 2 
N e 

∣∣∣, (7) 

A 4 = 2 

−r 

∣∣∣2 S 4 
N e 

∣∣∣, (8) 

A 8 = 

∣∣∣2 S 8 
N e 

∣∣∣, (9) 

which (in the case of a 3D domain) are computed in each direc- 

tion along N 

2 
e lines. The small value ε (set to 10 −2 in Section 3 and 

3 × 10 −2 in Section 4 ) is used to avoid division-by-zero problems 

in uniform flow conditions. Note that either the maximum or mean 

of these A values can be taken, thereby generating slightly different 

variants of I i and I f . It was found a posteriori that considering the 

maximum values in each block seems to make the indicators I i and 

I f more sensitive compared to taking the mean values (an opera- 

tion that likely smears out any under-resolution effects). Therefore, 

only the maximum values are considered in this paper. 

The quantity I i is an integer in the set {0, 1, 2, 3}, where a value 

of 3 indicates the worst possible error according to the error in- 

dicator, and 0 indicates that no error is present. In contrast, the 

quantity I f is a real value bounded below by zero (which indicates 

that little or no solution error is present). The I i indicator was de- 

vised by partitioning the spectrum decay into 3 spectral amplitude 

‘pairs’ ( S 2 –S 4 , S 4 –S 8 , S 2 –S 8 ). The ratios of these pairs give a piece- 

wise indication of how the spectrum decays and should satisfy a 

maximum acceptable deviation/‘turn-up’ in the spectrum’s slope. 

Any breach of these criteria is penalised accordingly, with a simi- 

lar approach also being applied to I f : ∣∣∣S 2 
S 4 

∣∣∣ ≤ 2 

r , (10) 

∣∣∣S 4 
S 8 

∣∣∣ ≤ 2 

r+1 , (11) 

∣∣∣S 2 
S 8 

∣∣∣ ≤ 2 

2 r+1 . (12) 

Deciding what constitutes an unacceptably high ‘turn-up’ in the 

spectrum’s slope depends on the specific problem at hand. One 

of the caveats of the approach is the need to estimate the mini- 

mal acceptable slope r of the spectrum. For example, this could be 

taken to decrease with a slope of r = -5/6 for turbulent dynamics 

(following Kolmogorov’s k −5 / 3 law for the inertial subrange of the 

spectral energy spectrum), but in practise r will be higher or lower 

locally; throughout this paper we consider a slope value of r = 

−0.5. If shocks are present, then a slope of −1 (following the k −2 

law for discontinuities [18] ) may be more appropriate. Note also 

that the slope r may also depend on the behaviour of the solution 

field/quantity being considered. The typical values mentioned so 

far correspond to the decay of energy, but it was found a posteri- 

ori that these values also worked well for vorticity which followed 

a similar decay pattern. Nevertheless, it is important to remember 

that the desired slope may vary depending on the chosen quantity 

and problem. 

The current approach is different to error indicators already ap- 

pearing in the literature. For example, robust indicators that are 

based on the second derivative (such as the Hessian matrix [19,20] ) 

or interior penalty methods [21] could also be used. However, 

one potential caveat with second derivative-based methods occurs 

when the solution has a low second derivative but still shows a 

‘turn-up’ in the Fourier spectrum decay. A flat spectrum without 

any ‘turn-up’ in the Fourier amplitude would pass our measure 

but fail the Hessian measure. Conversely, a steep spectrum with 

a ‘turn-up’ would pass the Hessian measure but fail our measure. 

Moreover, the way our approach analyses solution error mimics 

the way a user would manually check flow fields for grid-to-grid 

point oscillations and refine as necessary. 

3. Test case: compressible Taylor–Green vortex 

A three-dimensional compressible Taylor-Vortex problem (see 

e.g. [16] ) in a periodic cube domain of length 2 π was used to 

evaluate the effectiveness of the error indicator. This considered 

a fourth-order finite difference solution without additional filter- 

ing on computational grids of size N = 32 3 , 64 3 , 128 3 and 256 3 . 

The robustness of the error indicator was improved by considering 
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