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a b s t r a c t 

A numerical model for simulating electro-vortical flows in OpenFOAM is developed. Electric potential and 

current are solved in coupled solid-liquid conductors by a parent-child mesh technique. The magnetic 

field is computed using a combination of Biot–Savart’s law and induction equation. Further, a PCG solver 

with special regularisation for the electric potential is derived and implemented. Finally, a performance 

analysis is presented and the solver is validated against several test cases. 
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1. Introduction 

Electro-vortex flow is highly relevant in many industrial pro- 

cesses. Possible applications span from electromagnetic stirring 

[1] for grain size reduction in solidification [2,3] over electrode 

welding [4] , electroslag welding, electroslag (re-)melting [5,6] , vac- 

uum arc melting [7] to electrolytic reduction (of e.g. aluminium 

[8] ). Further, many technical devices, as liquid fuses [9] , electric 

jet engines, arc furnaces [10] and liquid metal batteries [11–13] in- 

volve or rely on electro-vortex flows. For an overview about such 

flows, see [14–16] . 

Electro-vortex flow is not an instability. It develops at (or near) 

a changing cross-section of a (liquid) conductor. Radial currents 

produce, together with their own magnetic field, a Lorentz force, 

which is non-conservative, i.e. its curl is not equal to zero. This 

force cannot be compensated totally by a pressure gradient and 

therefore drives a flow. For an illustrative example, see Shercliff

[17] . 

Numerical simulation of electro-vortex flow is easy when mod- 

elling only the fluid, or a non-conducting obstacle inside a fluid. 

However, in most realistic cases, electric current passes from solid 

to liquid conductors and vice versa. The electric potential in these 

regions must therefore be solved in a coupled way. The classical, 

segregated approach means solving an equation in each region, and 

coupling the potential only at the interfaces by suitable boundary 

conditions [11] . While that is easy to implement, convergence is 

rather poor. An implicit coupling of the different regions by block 

matrices is a sophisticated alternative for increasing convergence 
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[18] . However, it is memory-intensive and by no means easy to im- 

plement. 

In this article we will present an alternative effective option 

for region coupling in OpenFOAM. We solve global variables (elec- 

tric potential, current density) on a global mesh with a variable 

electric conductivity according to the underlying material. We then 

map the current density to the fluid regions and compute the elec- 

tromagnetic induced flow there. This parent-child mesh technique 

was already used for the similar problem of thermal conduction 

[19,20] and just recently for the solution of eddy-current problems 

with the finite volume method [21] . 

2. Mathematical and numerical model 

2.1. Overview 

The presented multi-region approach is based on a single phase 

incompressible magnetohydrodynamic (MHD) model [11,22] . The 

flow in the fluid is described by the Navier–Stokes equation (NSE) 

∂ u 

∂t 
+ ( u · ∇ ) u = −∇p + ν�u + 

J × B 

ρ
, (1) 

with u denoting the velocity, t the time, p the modified pressure, 

ν the kinematic viscosity and ρ the density. The fluid flow is mod- 

elled as laminar only; adding a turbulence model is planned for 

the future. We split the electric potential φ, the current density J 

and the magnetic field B into a constant (subscript 0) and induced 

part (lower case) as 

φ = φ0 + ϕ (2) 

J = J 0 + j (3) 

B = B 0 + b . (4) 
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In order to determine the distribution of the constant part of the 

electric potential φ0 we solve a Laplace equation for the electric 

potential 

∇ · σ∇φ0 = 0 (5) 

on the global mesh. The above equation is obtained starting from 

the Kirchhoff law of charge conservation ( ∇ · J 0 = 0 ) and J 0 = 

−σ∇φ0 . Note that the conductivity σ is a field and not a constant, 

because the equation is solved on the full geometry. During mesh 

generation, it is ensured that the border between two materials al- 

ways coincides with a face between two neighbouring cells. The 

global current density is then calculated as 

J 0 = −σ∇φ0 (6) 

and mapped to the fluid region. Afterwards, the constant magnetic 

field is determined as described in Section 2.1.1 only in the fluid. 

Often it is sufficient to calculate only the constant current and 

magnetic field. Nevertheless, our solver also allows to compute 

their induced counterparts, e.g. for simulating the Tayler instability 

[23–31] . The scheme is similar to that described above: in a first 

step, the induced electric potential ϕ is determined by solving a 

Poisson equation 

∇ · σ∇ϕ = ∇ · σ ( u × B ) (7) 

after mapping the source term u × B to the global mesh. The in- 

duced current can be computed taking into account Ohm’s law 

j = σ (−∇ϕ + u × B ) . (8) 

After mapping j to the fluid mesh we determine the induced mag- 

netic field as described in Section 2.1.1 . 

Our model is not capable of describing AC currents, because 

we use the quasi-static approximations by neglecting the tempo- 

ral derivation of the vector potential ( d a /dt = 0 ) and magnetic field 

( d b /dt = 0 ) [32] . For a detailed flowchart of the model, please refer 

to Fig. 1 . 

2.1.1. Computation of the magnetic field 

For the computation of both, the constant part of the magnetic 

field B 0 and its induced counterpart b we use the inversion of Am- 

père’s law, the Biot–Savart integral 

B ( r ) = 

μ0 

4 π

∫ 
J ( r ′ ) × ( r − r ′ ) 

| r − r ′ | 3 dV 

′ (9) 

to determine both from the current density J . This integro- 

differential approach was proposed by Meir and Schmidt [33–

38] and later used for describing dynamos [39–41] and the Tayler 

instability [22] . 

In order to obtain the magnetic field in one single cell (at the 

position r ), the electric current densities of all other cells (at the 

position r ′ ) have to be integrated. The number of operations is 

therefore equal to the number of cells squared. This way of com- 

putation is extremely costly. We will explain here several ways for 

a speed up of the procedure. Solving Biot–Savart’s integral on a 

coarser grid, recalculating it every n th time step, and an appropri- 

ate parallelisation [22] are the most simple ways. 

The parallelisation is implemented in OpenFOAM using MPI. Ba- 

sically, each processor contains only the current density of its local 

cells. With this, it computes the magnetic field for the full geome- 

try (see Fig. 2 a). Finally, the field B of each cell has to be summed 

up over all processors. This might be done using the MPI function 

ALLREDUCE, resulting in a correct and global B on all processors. 

However, this is not necessary, because a single processor needs 

only its local B for further computation. Therefore, each processor 

receives only its local magnetic field from all other processors and 

adds up all contributions given. The communication process is il- 

lustrated in Fig. 2 b. Increasing the speed-up considerably is possi- 

ble by computing Biot–Savart’s integral only on the boundaries and 

solving the induction equations [42,43] 

0 = �B 0 (10) 

0 = 

1 

σμ0 

�b + ∇ × ( u × B 0 ) + ∇ × ( u × b ) (11) 

for the constant and induced magnetic field in the quasi-static 

limit [32] . 

An even faster alternative is shifting the problem from the mag- 

netic field B to the vector potential A using the relation B = ∇ × A . 

Similar to Biot–Savart’s law for B , the vector potential can be de- 

termined by Green’s identity [44] : 

A ( r ) = 

μ0 

4 π

∫ 
J ( r ′ ) 

| r − r ′ | dV 

′ . (12) 

Please note that this formula is much cheaper to compute than 

Biot–Savart’s law ( Eq. 9 ) [45,46] . 

The transport equations for the vector potential are derived 

from Ampère’s law, B = ∇ × A , Ohm’s law [47] and using the 

Coulomb gauge condition ∇ · A = 0 as 

0 = 

1 

σμ0 

�A 0 − ∇φ0 (13) 

0 = 

1 

σμ0 

�a + u × B 0 + u × (∇ × a ) − ∇ϕ. (14) 

Basically all mentioned approaches of determining B based on 

Eq. (9) till (14) are equal from a physical point of view. But due 

to the way they are discretised and numerically solved, there will 

be differences in both accuracy and calculation time. While be- 

ing the most expensive method, calculating the magnetic field by 

means of Biot–Savart’s law also gives the most accurate result. This 

stems from the fact that the integral equation (9) represents an 

exact solution for B which is only numerically integrated for a fi- 

nite number of cells. As already mentioned, a computationally less 

expensive evaluation can be achieved with the help of the mag- 

netic vector potential A and Green’s identity (12) , where the com- 

plexity of the integrand is reduced compared to Eq. (9) . Despite of 

Eq. (12) also being an exact solution, the subsequent calculation 

of B = ∇ × A introduces an additional layer of discretisation errors 

from cell averaging and face interpolation. 

As outlined above, Biot–Savart’s law may be used also in com- 

bination with Eqs. (10) and (11) or Green’s identity (12) combined 

with Eqs. (13) and (14) , while only boundary values of B or A are 

evaluated using the exact integral equations. Internal values are 

then recovered from solving the related differential equations. This 

drastically improves computational efficiency at the cost of some 

accuracy. However, from Fig. 1 one can comprehend that it is suffi- 

cient to calculate B 0 or A 0 only once at the beginning of a simula- 

tion, whereas b or a needs to be updated recurringly while march- 

ing in time. The most promising way of determining the total mag- 

netic field B is thus to compute its static part B 0 once and solely 

using Biot–Savart’s law with the current density J 0 and the induced 

part b mediately from b = ∇ × a , whereby the solution of the in- 

duced magnetic vector potential a is in turn based on the trans- 

port Eq. (14) for which Dirichlet boundary conditions are derived 

from evaluating Green’s identity with the current density j . This 

approach has been used for all following calculations. 

In this way, B 0 is most accurate and b is repeatedly calcu- 

lated with minimum computational effort. Another important ad- 

vantage of this realisation is that the solenoidal nature of B is im- 

plicitly satisfied, as B 0 results from an exact solution in shape of 

Biot–Savart’s law and b is calculated from the definition of the in- 

duced vector potential a with ∇ · b = ∇ · (∇ × a ) ≡ 0 . Numerically, 

Gauss’s law ∇ · B = 0 is of course only met approximatively due 
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