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a b s t r a c t 

This paper proposes a new interpolation technique based on density approach to solve topology opti- 

mization problems for heat transfer. Natural convection forces are dominated as Richardson number is 

equal to 2.8. Problems are modeled under the assumptions of steady-state laminar flow using the incom- 

pressible Navier–Stokes equations coupled to the convection-diffusion equation through the Boussinesq 

approximation. The governing equations are discretized using finite volume elements and topology opti- 

mization is performed using adjoint sensitivity analysis. Material distribution and effective conductivity 

are interpolated by two sigmoid functions respectively h τ ( α) and k τ ( α) in order to provide a continuous 

transition between the solid and the fluid domains. Comparison with standard interpolation function of 

the literature (RAMP function) shows a smaller transition zone between the fluid and the solid thereby, 

avoiding some regularization techniques. In order to validate the new method, numerical applications are 

investigated on some geometric configurations from the literature, namely the single pipe and the bend 

pipe. Lastly, as two new parameters are introduced thanks to the interpolation functions, we study their 

impact on results of the optimization problem. The study shows that the proposed technique is a viable 

approach for designing geometries and fluid-porous media interfaces are well-defined. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since its introduction by Bendsoe and Sigmund [1] for solid 

mechanics problems, topology optimization has become a power- 

ful and increasingly popular tool for designers and engineers for 

design process. Topology optimization is a material distribution 

method for finding the optimal structure, for a given problem sub- 

ject to design constraints. Contrarily to shape optimization where 

the topology (i.e. the number of boundaries and connectivity) is 

predetermined, topology optimization allows introduction of new 

boundaries during the design process. 

Topology optimization was pioneered for Stokes flow by Bor- 

rvall and Petersson [4] . They introduced a friction term yielding 

the generalized Stokes equations. Gersborg–Hansen [9] and Olesen 

et al. [8] extended topology optimization for fluid flow problems 

to the Navier–Stokes equations. 

In topology optimization, the material distribution is 

parametrized by defining a design variable α ∈ {0; 1}. This variable 

is discrete and should either represent solid material ( α = 1 ) or 

fluid ( α = 0 ). A common approach to solve the topology optimiza- 

tion problem with this discrete value as optimization parameter 
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is to change it into a continuous one by introducing a porous 

media with a continuous permeability variable for each element. 

This method, known as the Brinkman penalization, leads to a 

problem where flow and (almost) non-flow regions are developed 

by allowing interpolation between the lower and upper value of 

permeability. Generally, authors used the density interpolation 

function proposed by Borrvall and Petersson [4] or a reformulated 

version of their convex and q -parametrized interpolation function. 

The parameter q > 0 is a penalty parameter that is used to control 

the level of ‘gray’ in the optimal design. However, authors had 

also obtained unsatisfactory optimal solutions. Therefore, they 

considered a two-step solution procedure where the problem was 

first solved with a small penalty value of q = 0 . 01 for example 

and then the result is used as initial case for the problem with 

a penalty value of q = 0 . 1 [4,8] or q = 1 [15] . The mathematical 

foundation of the interpolation of α was further investigated by 

Evgrafov [14] where the limiting cases of pure fluid and solid 

were included. Brinkman approach has since been used for several 

problems as transport problem [28] , reactive [32] and transient 

flows [3,33] , fluid-structure interaction [36] and also flows driven 

by body forces [37] . 

A variation of the approach is presented by Guest and Prevost 

[2] . They proposed to regularize the solid-fluid structure by deal- 

ing the material phase as a porous medium where fluid flow is 
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Nomenclature 

Physics Constants 

g Gravitational acceleration 

h τ Ratio between a kinematic viscosity and a perme- 

ability 

k τ Thermal conductivity, dimensionless 

l Characteristic length 

p Pressure, dimensionless 

u Velocity, dimensionless 

Gr Grashof number 

Pr Prandtl number 

Q t Proportion of material added in � at the end of op- 

timization 

Re Reynolds number 

Ri Richardson number 

T Fluid temperature 

J Objective function 

L Lagrange function 

T Size of transition zones 

Greek symbols 

α Design parameter 

αmax Maximal value that h τ can reach 

α0 Parameter of sigmoid function 

β Thermal expansion coefficient of fluid 

� Boundary of domain �

ε Stopping criterion in optimization algorithm 

θ Temperature, dimensionless 

λf Thermal diffusivity of the fluid 

λs Thermal conductivity of the solid 

τ Parameter of sigmoid function 


 Constant heat flux 

� Spatial domain 

Subscripts and other symbols 

0 Initial condition 

n Normal component of vector 

t Tangential component of vector 

in Relative to the inlet 

out Relative to the outlet 

R Relative to RAMP function 

S Relative to Sigmoid function 

S , 0 Relative to Sigmoid function with α0 = 0 
∗ Relative to Lagrange multipliers or adjoint variables 

governed by Darcy’s law. In their approach, flows through voids 

are governed by Stokes flow and, when the solid phase is imper- 

meable, discrete no-slip condition is simulated by assigning a low 

permeability to the solid phase. There exists other alternatives to 

Brinkman penalization in the literature. The level set approach to 

topology optimization has been applied to fluid flows problems 

[13,31,34,40,44] , and recently the level set approach was combined 

with the extended finite element method (XFEM) by Kreissl and 

Maute [5] and by Jenkins et al. [39] . The main drawback of the 

level set approach is the constraint of remeshing throughout the 

optimization process. 

The second difficulty in topology optimization is to deal with 

the difference in thermal conductivity in the solid and fluid do- 

mains. Most publications interpolate the conductivity using the 

SIMP method (Solid Isotropic Material with penalization). This 

method allows to deal with the discrete nature of conductivity ma- 

terial distribution. So, authors [6,15,30,36] considered a continuous 

local thermal conductivity controlled by the design parameter α
ranging from 0 to 1. Thanks to this function, the optimization al- 

gorithm is able to reallocate thermal conductivity material, or cre- 

ating ‘holes’ in its structure to reach the objective function. More- 

over, the convex and q -parametrized function interpolation is sim- 

ilar to the density interpolation function of Borrvall and Petersson 

[4] or the RAMP (Rational Approximation of Material Properties)- 

style function as introduced by Stolpe [7,16,30] . Other methods 

have also been investigated. Matsumori et al. [19] presented re- 

sults with a linear-interpolated design-dependant volumetric heat 

generation. Dede [20] used a linear interpolation for thermal con- 

ductivity. Thus, the main issue is to deal with intermediate design 

variables and non-physical flow solutions. That corresponds to nu- 

merical solutions where the fluid has a non-null velocity in a re- 

gion assigned to solid regions. We can also obtain optimized de- 

signs with zones containing a fluid flow although there is no path 

from the inlet for the flow. 

There are three main categories of algorithms to solve topology 

optimization problems : gradient-free, gradient-based and hessian- 

based algorithms. In topology optimization problems with large 

number of design variables, gradient-based algorithms are used to 

find accurate solutions efficiently. One of the advantages of the 

interpolation functions described above is the possibility of us- 

ing gradient-based continuous optimization methods. These meth- 

ods are based on derivatives in order to find extrema, and are 

the so-called sensitivity analysis. It aims at evaluating the deriva- 

tive of objective function with respect to α. Gradient-based algo- 

rithm is widely used by several authors [21,27,30,35,45] . Moreover, 

since most of the topology optimization problems involve a huge 

amount of design variables, specific gradient-based optimization 

algorithms must be chosen to handle this difficulty. A famous algo- 

rithm from the literature is the MMA (Method of Moving Asymp- 

totes) developed initially by Svanberg [41] . In order to reduce the 

computational costs, adjoint approach consisting to calculate the 

sensitivities of the objective function by an adjoint state has been 

adopted. Other methods have been explored to reduce the com- 

putation cost: the multigrid preconditioned conjugate gradients 

(MGCC) by Amir et al. [22] , multi-resolution multi-scale topology 

optimization technique by Kim et al. [23] , the technique of using 

adaptive design variable fields by Guest et al. [26] . 

Moreover, various regularization techniques based on filter- 

ing of either the design variable α or the sensitivity ∂ f 
∂α

[1,10,15,30,46] exist to ensure well-posed topology optimization 

problems. The regularization works by defining a certain length 

scale r 0 below which any features in α or ∂ f 
∂α

are smeared out 

by the filter; that results in optimized structures with a minimal 

feature size r 0 independent of the mesh refinement. As mentioned 

by some authors [15,29] , these regularization techniques allow to 

avoid checkerboard problems. 

This paper proposes a new interpolation technique in order to 

solve a heat transfer topology optimization problem. Design ma- 

terial and effective conductivity are interpolated respectively by 

a function h τ ( α) and another function k τ ( α) in order to provide 

a continuous transition between the solid and the fluid domains. 

These interpolation functions avoid the use of some regularization 

techniques because the problem can be solved in one-step with- 

out a new value of the convexity parameter. Moreover, these in- 

terpolation functions allow a smaller transition zone between the 

fluid and solid regions. To prove this claim and get more quali- 

tative results, the size of these transition zones is explicitly com- 

puted and comparison with standard RAMP interpolation is led. 

In order to validate the new method, some numerical applications 

are investigated on the single pipe and the bend pipe cases. Lastly, 

as two new parameters are introduced thanks to the interpolation 

functions, we study their impact on the results of an optimization 

problem. 

The main novelty of this paper is first the definition of a new 

interpolation function that avoids the use of some regularization 
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