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a b s t r a c t 

We present an advection velocity correction (AVC) scheme for interface tracking using the level-set 

method in this paper. The key idea is to apply a correction to the interface advection velocity at points 

adjacent to the zero level-set, so as to enforce the preservation of the signed distance function prop- 

erty at these points. As such, the AVC scheme eliminates the need for explicit sub-cell fix approaches 

as reinitialization at points adjacent to the zero level-set is not needed. This approach of correcting the 

advection velocity field near the interface and computing the signed distance function; SDF to a high or- 

der of accuracy near the interface, rather than applying an explicit sub-cell fix during the reinitialization 

step represents the key novel aspect of the AVC scheme. We present results from using the AVC scheme 

along with advection and reinitialization schemes using upwind finite differencing on uniform meshes in 

this paper. These results are determined for four canonical test problems: slotted disk rotation, deform- 

ing sphere, interacting circles and vortex in a box. We compare these results with corresponding results 

determined using a recently proposed explicit sub-cell fix based reinitialization scheme (CR2). These com- 

parisons show that the AVC scheme yields significantly improved conservation of enclosed volume/area 

within the interface. Note, the present AVC scheme achieves this by only modifying velocity field values 

at mesh points. Therefore, the AVC algorithm can in principle be used within the framework of nearly any 

numerical scheme used to compute interface evolution using the level-set method, even on non-uniform 

and unstructured meshes, in order to achieve improvements in solution quality. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Interface tracking is a key problem which arises in many appli- 

cation areas of computational modeling [1,2] which involves track- 

ing the evolution of a closed interface (i.e. the boundary of some 

open set in the computational domain), as shown schematically 

by the red curve in Fig. 1 , under the influence of a velocity field 

�
 v ( � x , t) . Interfaces are represented in the level-set method by con- 

structing a higher dimensional function φ( � x , t) such that, φ( � x , t) = 

0 for all points that lie on the interface, φ( � x , t) < 0 at points in- 

side the interface and φ( � x , t) > 0 at points outside the interface - 

see Fig. 1 . As such, the shape of the zero level-set of φ corresponds 

to the shape of the interface. Further, φ must vary monotonically 

near the interface and may not have an extremum or critical point 

at a point on the interface. Thus, the evolution of the interface un- 

der the action of � v ( � x , t) , is implicitly tracked by requiring that the 

value of φ at points on the interface remain unchanged. This yields 
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the level-set advection equation as follows (see for e.g. [1] ), 

∂φ

∂t 
+ 

�
 v · ∇φ = 0 (1) 

where, � v may be defined either only on the interface or at all 

points in the domain, depending on the specific details of the 

physics governing the evolution of the interface. 

The implicit representation of the interface using φ in the level- 

set method means that it can be applied to interfaces that are ei- 

ther simply connected or multiply connected. This is because the 

function φ is well defined and continuous in both these cases. Also, 

topological changes in the interface during the course of its evolu- 

tion are automatically captured by solving Eq. (1) . This is the sig- 

nificant advantage in terms of simplicity of implementation of the 

level-set method over explicit methods for interface evolution such 

as particle tracking. 

Eq. (1) is numerically solved using techniques developed for ad- 

vection equations or Hamilton–Jacobi equations (see e.g. refs. [1,3] ), 

starting from an initial condition for φ whose zero level-set coin- 

cides with the shape of the interface. It is common to choose the 

value of φ at every point in the domain to be the minimum signed 

distance of the point from the interface. The sign of φ is chosen 
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Fig. 1. Schematic showing the representation of an interface in the framework of 

the level-set method. The closed red curve shows the interface, �.(For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

as negative when the point lies inside the interface and positive, 

when it lies outside [2] . The resulting signed distance function 

(SDF) is a continuous function that nominally satisfies |∇φ| = 1 

(SDF property) everywhere. This ensures that numerical solutions 

to Eq. (1) are accurately computed, as long as, φ retains the SDF 

property during the computation. However, in general, � v can po- 

tentially cause steep gradients to develop in φ under the action of 

Eq. (1) . This in turn, results in large numerical errors in the com- 

putation of φ and as a consequence, a loss of accuracy in the shape 

of its zero level-set. 

Two classes of techniques have been developed to address this 

problem. The first is the fast marching technique of Adalsteins- 

son and Sethian [4] where, � v is extended off the zero level-set of 

φ along the orthogonal trajectories of its level-sets such that the 

value of � v along these trajectories does not change. This is suffi- 

cient to maintain the SDF property of φ throughout the computa- 

tion. The other class of techniques is based on the re-initialization 

approach where the values of φ at points away from the zero level- 

set are reset to the value of the SDF from the latter, by solving an 

auxiliary partial differential equation as follows [5] . 

∂φ

∂τ
+ S(φ0 )(|∇φ| − 1) = 0 (2) 

where, φ0 is the level-set field resulting from solving 

Eq. (1) through one or more time steps and S ( x ) is the sign 

function which takes values 1, 0 and -1 for positive, negative and 

zero values of its argument. Eq. (2) is solved after one or more 

time steps of Eq. (1) , which at steady state yields, |∇φ| = 1 at 

points where φ � = 0. The pseudo-time, τ , is introduced to anticipate 

the use of numerical schemes based on time stepping methods 

to solve Eq. (2) , using φ0 as an initial condition. Also, the second 

term on the left of Eq. (2) formally disappears at points where 

φ0 = 0 . Therefore, Eq. (2) nominally leaves the shape of the zero 

level-set unchanged. 

Errors resulting from the numerical discretization of Eq. (2) at 

points adjacent to the zero level-set of φ0 , cause spurious move- 

ment of the latter resulting in inaccurate interface evolution. 

This can cause violation of mass conservation when the level-set 

method is used in conjunction with the Navier–Stokes equations 

for fluid flow problems. Several approaches have been proposed to 

mitigate this problem such as, using high order schemes [6,7] and 

coupling the level-set method with other types of interface track- 

ing such as the volume of fluid (VOF) based approaches [8,9] . 

Russo and Smereka [10] show that Eq. (2) can be rewritten as an 

advection equation with an advection velocity of unity, directed 

along the orthogonal trajectories of φ. As such, numerical errors 

arise at points adjacent to the interface when upwind finite dif- 

ference schemes are used to solve Eq. (2) because of incorrect up- 

wind discretizations at these points. They proposed a sub-cell fix 

approach where, the upwind discretization of spatial derivatives at 

points adjacent to the zero level-set of φ0 are replaced with those 

computed using a direct estimate of their distance from the zero 

level-set [10] . Alternatively, they have suggested that the numeri- 

cal scheme at these points may be bypassed and the value of φ be 

set to the sub-cell fix estimate. 

Recently, Hartmann et al. [11] have developed two schemes that 

improve upon the baseline sub-cell fix distance estimate proposed 

by Russo and Smereka [10] . The CR1 [11] scheme derives a sub- 

cell fix distance estimate at points adjacent to the zero level-set by 

formally minimizing the deviations of φ from the SDF property as 

well as spurious movement of the zero-level set introduced by the 

sub-cell fix of Russo and Smereka [10] in a least squares sense. The 

CR2 [11] scheme enforces a constraint on the sub-cell fix estimate 

so as to explicitly anchor the location of the zero-level set within a 

grid cell. In a companion paper, Hartmann et al. [12] have general- 

ized these ideas to be amenable to higher order spatial discretiza- 

tion. Both of these approaches have yielded significant improve- 

ments in solution quality over the original proposition of Russo 

and Smereka [10] . 

We present a different technique for computing values of φ at 

grid points adjacent to the interface in this paper, motivated by 

the principle underlying the velocity extension approach of Adal- 

steinsson and Sethian [4] . They show that the SDF property is pre- 

served if the component of � v along the orthogonal trajectories to 

the level-sets of φ is invariant. Our technique enforces this prop- 

erty in a discrete sense at grid points adjacent to the zero level set 

by applying a correction to � v at grid points adjacent to the zero 

level-set of φ. This velocity correction ensures that the level-sets 

of φ passing through these grid points, move with the same veloc- 

ity normal to themselves as the zero level-set. Thus, this ensures 

that the SDF property is preserved over an advection timestep at 

grid points adjacent to the zero level-set of φ. Therefore, Eq. (2) is 

not solved at these points and no additional sub-cell fix is ap- 

plied either. As such, the values of φ at these points serve as a 

Dirichlet boundary condition for the remaining points in the do- 

main where Eq. (2) is solved to restore the SDF property of φ. We 

call this scheme the advection velocity correction (AVC) scheme. 

To the best of the authors’ knowledge, this approach for preserv- 

ing the SDF property of the level-set function at points near the 

interface by correcting the advection velocity field has not been 

proposed earlier and represents the key novel contribution of this 

paper. 

We compare results from the AVC scheme to those obtained us- 

ing the CR2 scheme of Hartmann et al. [11] which is chosen as a 

reference method. The same numerical schemes are used in both 

AVC and CR2 computations for level-set advection and reinitializa- 

tion. The key difference between the two sets of computations is 

that the CR2 scheme explicitly computes the SDF at grid points ad- 

jacent to its zero level-set using a sub-cell fix approach during the 

reinitialization step [11] , while, the AVC scheme achieves the same 

result by correcting advection velocities at these points in the ad- 

vection step. Test cases that are representative of interface evo- 

lution scenarios that can arise in interface tracking problems are 

chosen for comparison. All of these computations are performed 

on a mesh with uniform grid spacing in all three directions. The 

results show that for a given mesh size, the AVC scheme provides 

results that are significantly improved with respect to area and 

volume conservation when compared to the results obtained us- 

ing the CR2 scheme. The AVC scheme presented in this paper can 

be easily implemented within the framework of any numerical ap- 

proach to solving Eqs. (1) and (2) on non-uniform and even un- 

structured meshes as well. 

The rest of this paper is organized as follows. Section 2 provides 

the theoretical background and formulation of the AVC scheme in 

a generalized manner. Section 3 gives details of the specific imple- 

mentation of the AVC scheme applied within the framework of nu- 

merical methods proposed by Nourgaliev and Theofanous [3] used 
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