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a b s t r a c t 

The current work explores the use of an approximate Hessian to accelerate the convergence of an adjoint- 

based aerodynamic shape optimization framework. Exact analytical formulations of the direct-direct, 

adjoint-direct, adjoint-adjoint, and direct-adjoint Hessian approaches are presented and the equivalence 

between the adjoint-adjoint and direct-adjoint formulations is demonstrated. An approximation of the 

Hessian is obtained from the analytical formulation by partially solving first-order sensitivities to reduce 

computational time, while neglecting second-order sensitivities to ease implementation. Error bounds on 

the resulting approximation are presented for the first-order sensitivities through perturbation analysis. 

The proposed method is first assessed using an inverse pressure problem for a quasi-one-dimensional 

Euler flow. Additionally, three-dimensional inviscid transonic test cases are used to demonstrate the ef- 

fectiveness of the method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The objective of this work is to develop the necessary tools 

to design environmentally and economically friendly aircraft. Since 

the use of computational fluid dynamics in conjunction with nu- 

merical optimization has been a dominant design method in recent 

years, improvement of flow solvers and optimization algorithms 

lead to faster and more robust design tools. The current state-of- 

the-art framework for aerodynamic shape optimization (ASO) uses 

a sequential quadratic programming (SQP) approach with adjoint- 

based gradients. 

The adjoint approach developed by Pironneau [1] and extended 

by Jameson [2] provides the optimizer with the gradients of the 

objective function with respect to the design variables. The com- 

putational cost of the adjoint is independent of the number of de- 

sign variables, making it superior to finite differences or the direct 

method in ASO. In effect, gradient-based algorithms such as gradi- 

ent descent use the sensitivities to march towards a descent direc- 

tion. 

Multiple techniques have been devised to accelerate the opti- 

mization problem convergence, most of which involve a Hessian 

formulation. Gradient descent can alternatively be interpreted as 
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Newton’s method with an identity matrix as its Hessian approx- 

imation. The most simplistic change to the gradient descent algo- 

rithm is to scale the design variables such that the search direction 

is not disproportionate. 

The resulting scaling can be represented as a Hessian with 

scaled diagonal entries that seeks to imitate curvature informa- 

tion. Quasi-Newton methods such as BFGS and symmetric rank- 

one (SR1) approximate the Hessian at each design cycle from the 

change in design variables and gradients. Analytical approximate 

Hessians that do not require second-order flow sensitivities have 

been formulated for inverse design problems due to their quadratic 

nature [3,4] . The idea of gradient smoothing using Sobolev gra- 

dients [2] has extended to more complex approximate Hessians 

via shape calculus and Fourier analysis [5,6] . With the advent of 

automatic differentiation (AD), exact second-order sensitivities [7–

9] have been employed in ASO problems. However, the high cost 

of computing the numerically exact discrete Hessian has lead to 

truncated-Newton methods [10,11] that use conjugate-gradient or 

Newton–Krylov methods to approximate the search direction with 

matrix-vector products of the Hessian. Due to their low computa- 

tional and implementation cost, identity-initialized quasi-Newton 

methods are still the workhorse of most ASO frameworks such as 

SNOPT [12] , NLPQLP [13] , and IPOPT [14] and will be referred as 

the conventional approach. 

The goal of the BFGS algorithm is to update the Hessian matrix 

at every design cycle, such that it properly estimates the design 

space curvature. In other words, it retrieves some second-order in- 
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formation at every step. During the final iterations of the optimiza- 

tion, it hopes to perform Newton steps such that a local minimum 

is found superlinearly. However, for a quadratic design space, the 

BFGS algorithm requires as many steps as the number of design 

variables to retrieve the exact Hessian [15] . A non-linear design 

space will require even more design cycles to retrieve a good ap- 

proximation. Ideally, Newton steps are taken from the initial design 

to the optimal design to converge quadratically. Unfortunately, the 

prohibitive cost of evaluating the Hessian disfavor the use of New- 

ton’s method. 

The work of Papadimitriou and Giannakoglou [8,16–19] explores 

the use of an exactly-initialized BFGS algorithm in an ASO frame- 

work. Although the Hessian is only evaluated once, the initial cost 

is still too large to be effective. It is especially risky when the ini- 

tial design lies in a non-convex region, where the Hessian must 

be modified. Furthermore, the initial time required to compute the 

Hessian is a large investment since the optimizer spends most of 

its computational time without stepping towards an optimum. 

The current work aims to drastically reduce the initial cost 

by evaluating an approximate Hessian. The same initialized-BFGS 

framework as Papadimitriou and Giannakoglou [8] is used, but 

with an approximate initial Hessian. A flowchart of the optimiza- 

tion framework is shown in Fig. 1 . The approximation is recovered 

by partially solving flow sensitivities, which are the most compu- 

tationally intensive terms. The error incurred by the partial con- 

vergence of the flow sensitivities on the Hessian eigenvalues is in- 

vestigated. Given an existing aerodynamic optimization framework, 

the proposed method can be easily implemented by further ap- 

proximating the Hessian by discarding second-order flow sensitiv- 

ities. 

Four analytical formulations are presented in the first sec- 

tions based on previous works [7,8] . Among those, the equiva- 

lence between the adjoint-adjoint and direct-adjoint formulations 

is demonstrated. Subsequently, parts of the Hessian are approx- 

imated in order to alleviate computational and implementation 

cost. It is followed by a mathematical bound on the incurred error 

through perturbation analysis. Finally, the proposed methods are 

tested using a quasi-one-dimensional Euler flow inverse pressure 

problem and three-dimensional inviscid transonic optimization test 

cases. 

2. First-order sensitivities 

The gradient of an objective function can be computed from ei- 

ther direct differentiation or the adjoint method. Although the ad- 

joint method is used to compute the gradient, the direct method 

will be required for the evaluation of the Hessian. 

2.1. Flow sensitivities 

The objective function I = I(w , x ) is a function of the flow state 

variables w = w (x ) and the geometry x = x ( α) , which in turn is 

parametrized through the control points α. The number of design 

variables α is defined by N α. The state variables are implicitly de- 

fined through the steady-state solution of the Navier–Stokes equa- 

tions, where the residual of a converged solution is zero. 

R = R (w , x ) = 0 . (1) 

The gradient of the cost function and the flow residual with re- 

spect to control points are defined through the chain rule. 

dI(w , x ) 

d α
= w 

dw 

d α
+ x 

dx 

d α
, (2) 

dR (w , x ) 

d α
= w 

dw 

d α
+ x 

dx 

d α
= 0 . (3) 

Fig. 1. Optimization framework flowchart. 

2.2. Direct differentiation 

The derivative of the state variables with respect to the design 

variables d w / d α can be solved by using Eq. (3) . The linear system 

is then solved for N α right-hand sides. 

∂R 

∂w 

dw 

d α
= −∂R 

∂x 

dx 

d α
. (4) 

Unfortunately, the number of required solutions increases lin- 

early with the number of design variables. As a result, the ASO 

community has been using the adjoint method to evaluate the 

functional derivatives. 

An alternative to solving the linear system is to use the finite- 

difference method. This method is attractive when the above lin- 

ear system is stiff and the flow solver converges well. Furthermore, 

frameworks that solve the flow and the adjoint explicitly will not 

need to implement the implicit linear system solver. Since the 

finite-difference perturbations are extremely small, the converged 

flow solution is a very good initialization for the slightly perturbed 

design and should converge quickly. 
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