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a b s t r a c t 

Advances in computing power have enabled computational fluid dynamics (CFD) to become a crucial tool 

in aerodynamic design. To facilitate CFD-based design, the combination of gradient-based optimization 

and the adjoint method for computing derivatives can be used to optimize designs with respect to a 

large number of design variables. Open field operation and manipulation (OpenFOAM) is an open source 

CFD package that is becoming increasingly popular, but it currently lacks an efficient infrastructure for 

constrained design optimization. To address this problem, we develop an optimization framework that 

consists of an efficient discrete adjoint implementation for computing derivatives and a Python inter- 

face to multiple numerical optimization packages. Our adjoint optimization framework has the following 

salient features: (1) The adjoint computation is efficient, with a computational cost that is similar to that 

of the primal flow solver and scales up to 10 million cells and 1024 CPU cores. (2) The adjoint deriva- 

tives are fully consistent with those generated by the flow solver with an average error of less than 

0.1%. (3) The adjoint framework can handle optimization problems with more than 100 design variables 

and various geometric and physical constraints such as volume, thickness, curvature, and lift constraints. 

(4) The framework includes additional modules that are essential for successful design optimization: a 

geometry-parametrization module, a mesh-deformation algorithm, and an interface to numerical opti- 

mizations. To demonstrate our design-optimization framework, we optimize the ramp shape of a simple 

bluff geometry and analyze the flow in detail. We achieve 9.4% drag reduction, which is validated by wind 

tunnel experiments. Furthermore, we apply the framework to solve two more complex aerodynamic- 

shape-optimization applications: an unmanned aerial vehicle, and a car. For these two cases, the drag is 

reduced by 5.6% and 12.1%, respectively, which demonstrates that the proposed optimization framework 

functions as desired. Given these validated improvements, the developed techniques have the potential 

to be a useful tool in a wide range of engineering design applications, such as aircraft, cars, ships, and 

turbomachinery. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Open field operation and manipulation (OpenFOAM) is an open 

source software package for computational fluid dynamics (CFD) 

[1,2] that contains more than 80 solvers capable of simulating var- 

ious types of flow processes, including aerodynamics, hydrodynam- 

ics, heat transfer, and multiphase flow [3] . OpenFOAM is being ac- 

tively developed and verified by its users and developers [4–7] , 

and its popularity has been rapidly growing over the past decade. 

OpenFOAM has become a powerful tool for aerodynamic design 

of engineering systems such as aircraft, cars, and turbomachinery 

∗ Corresponding author. 

E-mail address: drpinghe@umich.edu (P. He). 

[8–14] . One of the major tasks in the process of aerodynamic de- 

sign is to improve system performance (e.g., reduce drag, maximize 

power, and improve efficiency). Traditionally, it involves manual 

loops of design modification and performance evaluation, which is 

not efficient. To improve the efficiency of this process, the combi- 

nation of gradient-based optimization and the adjoint method for 

computing derivatives can be used to automatically optimize the 

design. The true benefit of using the adjoint method to compute 

derivatives is that its computational cost is almost independent of 

the number of design variables, which enables complex industrial 

design optimization. Given this background, the development of an 

adjoint optimization framework may facilitate the existing process 

of OpenFOAM-based aerodynamic-shape design. 

The adjoint method was first introduced to fluid mechanics 

by Pironneau [15] in 1970s. The approach was then extended by 
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Jameson [16] to the optimization of two-dimensional aerodynamic- 

shape design in the late 1980s. Since then, the adjoint method has 

been implemented for three-dimensional turbulent flows, and its 

application has also been generalized to multipoint and multidis- 

ciplinary design optimization [17–26] . While the adjoint method 

is recognized as an efficient method for computing derivatives of 

a solver based on partial differential equations (PDEs), success- 

ful optimization requires a framework that includes other compo- 

nents that go beyond the flow solution and derivative computation. 

We also require modules for geometry manipulation, mesh defor- 

mation, and optimization algorithms. The speed and accuracy of 

such modules, especially as they pertain to derivative computation, 

strongly impact the overall optimization. We have developed a full 

suite of modules to facilitate aerodynamic optimization, some of 

which have been published previously. The geometry-manipulation 

module was developed by Kenway et al. [27] and has been used in 

various aerodynamic and aerostructural design-optimization stud- 

ies [26,28–31] . Perez et al. [32] developed an open source Python 

interface to various numerical optimization packages that we reuse 

here. 1 In the present work, we focus on the implementation of the 

adjoint solver in OpenFOAM, the development of which allows the 

OpenFOAM solver to be efficiently integrated into our existing op- 

timization framework. 

Two different methods exist for formulating the adjoint of a 

flow solver: continuous and discrete [33] . The continuous approach 

derives the adjoint formulation from the Navier–Stokes (NS) equa- 

tions and then discretizes to obtain the numerical solution. In con- 

trast, the discrete approach starts from the discretized NS equa- 

tions and differentiates the discretized equations to get the adjoint 

terms. Although these two approaches handle adjoint formulation 

in different ways, they both converge to the same answer for a suf- 

ficiently refined mesh [34] . 

The adjoint method was first implemented in OpenFOAM by 

Othmer [35] , who used the continuous approach to derive the ad- 

joint formulation for the incompressible flow solver simpleFoam. 

This continuous adjoint implementation was then integrated as 

a built-in OpenFOAM solver for computing derivatives. A num- 

ber of recent studies have reported shape optimization based on 

derivatives computed from the continuous adjoint [36–40] . Oth- 

mer’s continuous adjoint framework uses a free-form deformation 

(FFD) geometry-morphing technique that can handle complex ge- 

ometries such as full-scale cars. Moreover, the computational cost 

for the adjoint is similar to that for the primal flow solver, allowing 

one to tackle cases with more than 10 million cells [38,39] . How- 

ever, they used a basic steepest descent optimization algorithm to 

update the shape, so their optimization problems did not include 

design constraints. 

More recently, Towara and Naumann [41] reported a discrete 

adjoint implementation for OpenFOAM. They used reverse mode 

automatic differentiation (AD) to compute derivatives so that the 

adjoint derivatives are fully consistent with the flow solution, re- 

gardless of the mesh refinement. However, they used AD to dif- 

ferentiate the entire OpenFOAM code, requiring all flow variables 

to be stored to conduct the reverse AD computation. To reduce 

the memory required to store the flow variables, the checkpoint- 

ing technique was used to trade speed for memory. As a result, 

the overall computational cost to compute derivatives is high—the 

adjoint-flow runtime ratio ranges from 5 to 15 [42–44] . Given the 

cost of this adjoint computation, it would be hard to use this im- 

plementation for practical shape optimization. 

Instead of applying AD to the entire code, we implement a 

discrete adjoint approach where the partial derivatives in the 

adjoint equations are computed by using finite differences (see 

1 https://www.github.com/mdolab/pyoptsparse . 

Section 2.5 ). The objective here is to develop an adjoint solver 

within the limitations of the OpenFOAM framework that is suffi- 

ciently efficient for practical shape optimization. We evaluate the 

performance of our adjoint implementation in terms of speed, scal- 

ability, and accuracy, optimize the aerodynamic shape of a bluff

geometry representative of a ground vehicle, and validate the opti- 

mized result by comparing it with the result of wind tunnel exper- 

iments. Furthermore, we demonstrate the constrained optimization 

capability for two more complex shape-optimization applications: 

an unmanned aerial vehicle (UAV), and a car. We opt to use the 

discrete adjoint approach because the adjoint derivative is consis- 

tent with the flow solution, as mentioned above. Moreover, we find 

the discrete adjoint implementation easier to maintain and extend 

(for example, when adding new objective or constraint functions 

and boundary conditions). 

The rest of the paper is organized as follows: Section 2 intro- 

duces the optimization framework along with the theoretical back- 

ground for each of its modules. Section 3 evaluates its performance 

and presents the aerodynamic shape optimization results. Finally, 

we summarize and give conclusions in Section 4 . 

2. Methodology 

The design-optimization framework implements a discrete ad- 

joint for computing the total derivative d f/ d x , where f is the 

function of interest (which for optimization will be the objective 

and constraint functions, e.g., drag, lift, and pitching moment), 

and x represents the design variables that control the geometric 

shape via FFD control point movements. The design-optimization 

framework consists of multiple components written in C ++ and 

Python and depends on the following external libraries and mod- 

ules: OpenFOAM, portable, extensible toolkit for scientific compu- 

tation (PETSc) [45,46] , pyGeo [27] , pyWarp [27] , and pyOptSparse 

[32] . The framework also requires an external optimization pack- 

age, which can be any package supported by the pyOptSparse opti- 

mization interface. In this section, we elaborate on the overall ad- 

joint optimization framework, the theoretical background for the 

framework modules, and the code structure and implementation. 

2.1. Discrete adjoint optimization framework 

Fig. 1 shows the modules and data flow for the optimization 

framework. We use the extended design structure matrix standard 

developed by Lambe and Martins [47] . The diagonal entries are the 

modules in the optimization process, whereas the off-diagonal en- 

tries are the data. Each module takes data input from the vertical 

direction and outputs data in the horizontal direction. The thick 

gray lines and thin black lines denote the data and process flow, 

respectively. The numbers in the entries are their execution order. 

The framework consists of two major layers: OpenFOAM and 

Python, and they interact through input and output files. The 

OpenFOAM layer consists of a flow solver (simpleFoam), an adjoint 

solver (discreteAdjointSolver), and a graph-coloring solver (color- 

ingSolver). The flow solver is based on the standard OpenFOAM 

solver simpleFoam for steady incompressible turbulent flow. The 

adjoint solver computes the total derivative d f/ d x based on the 

flow solution generated by simpleFoam. The mesh deformation 

derivative matrix ( d x v / d x , where x v contains the volume-mesh co- 

ordinates) is needed when computing the total derivative and is 

provided by the Python layer. To accelerate computation of the 

partial derivatives, we developed a parallel graph-coloring solver, 

whose algorithm is discussed in Section 2.6 . 

The Python layer is a high-level interface that takes the user 

input and the total derivatives computed by the OpenFOAM layer 

and calls multiple external modules to perform constrained opti- 

mization. To be more specific, these external modules include “py- 

https://www.github.com/mdolab/pyoptsparse


Download English Version:

https://daneshyari.com/en/article/7156186

Download Persian Version:

https://daneshyari.com/article/7156186

Daneshyari.com

https://daneshyari.com/en/article/7156186
https://daneshyari.com/article/7156186
https://daneshyari.com

