
Computers and Fluids 168 (2018) 285–303

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

An aerodynamic design optimization framework using a discrete

adjoint approach with OpenFOAM

Ping He

a , ∗, Charles A. Mader a , Joaquim R.R.A. Martins a , Kevin J. Maki b

a Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
b Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

a r t i c l e i n f o

Article history:

Received 8 November 2017

Revised 9 March 2018

Accepted 6 April 2018

Available online 7 April 2018

Keywords:

OpenFOAM

Discrete adjoint optimization

Parallel graph coloring

Ahmed body

UAV

Car

a b s t r a c t

Advances in computing power have enabled computational fluid dynamics (CFD) to become a crucial tool

in aerodynamic design. To facilitate CFD-based design, the combination of gradient-based optimization

and the adjoint method for computing derivatives can be used to optimize designs with respect to a

large number of design variables. Open field operation and manipulation (OpenFOAM) is an open source

CFD package that is becoming increasingly popular, but it currently lacks an efficient infrastructure for

constrained design optimization. To address this problem, we develop an optimization framework that

consists of an efficient discrete adjoint implementation for computing derivatives and a Python inter-

face to multiple numerical optimization packages. Our adjoint optimization framework has the following

salient features: (1) The adjoint computation is efficient, with a computational cost that is similar to that

of the primal flow solver and scales up to 10 million cells and 1024 CPU cores. (2) The adjoint deriva-

tives are fully consistent with those generated by the flow solver with an average error of less than

0.1%. (3) The adjoint framework can handle optimization problems with more than 100 design variables

and various geometric and physical constraints such as volume, thickness, curvature, and lift constraints.

(4) The framework includes additional modules that are essential for successful design optimization: a

geometry-parametrization module, a mesh-deformation algorithm, and an interface to numerical opti-

mizations. To demonstrate our design-optimization framework, we optimize the ramp shape of a simple

bluff geometry and analyze the flow in detail. We achieve 9.4% drag reduction, which is validated by wind

tunnel experiments. Furthermore, we apply the framework to solve two more complex aerodynamic-

shape-optimization applications: an unmanned aerial vehicle, and a car. For these two cases, the drag is

reduced by 5.6% and 12.1%, respectively, which demonstrates that the proposed optimization framework

functions as desired. Given these validated improvements, the developed techniques have the potential

to be a useful tool in a wide range of engineering design applications, such as aircraft, cars, ships, and

turbomachinery.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Open field operation and manipulation (OpenFOAM) is an open

source software package for computational fluid dynamics (CFD)

[1,2] that contains more than 80 solvers capable of simulating var-

ious types of flow processes, including aerodynamics, hydrodynam-

ics, heat transfer, and multiphase flow [3] . OpenFOAM is being ac-

tively developed and verified by its users and developers [4–7] ,

and its popularity has been rapidly growing over the past decade.

OpenFOAM has become a powerful tool for aerodynamic design

of engineering systems such as aircraft, cars, and turbomachinery

∗ Corresponding author.

E-mail address: drpinghe@umich.edu (P. He).

[8–14] . One of the major tasks in the process of aerodynamic de-

sign is to improve system performance (e.g., reduce drag, maximize

power, and improve efficiency). Traditionally, it involves manual

loops of design modification and performance evaluation, which is

not efficient. To improve the efficiency of this process, the combi-

nation of gradient-based optimization and the adjoint method for

computing derivatives can be used to automatically optimize the

design. The true benefit of using the adjoint method to compute

derivatives is that its computational cost is almost independent of

the number of design variables, which enables complex industrial

design optimization. Given this background, the development of an

adjoint optimization framework may facilitate the existing process

of OpenFOAM-based aerodynamic-shape design.

The adjoint method was first introduced to fluid mechanics

by Pironneau [15] in 1970s. The approach was then extended by

https://doi.org/10.1016/j.compfluid.2018.04.012

0045-7930/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compfluid.2018.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.04.012&domain=pdf
mailto:drpinghe@umich.edu
https://doi.org/10.1016/j.compfluid.2018.04.012

286 P. He et al. / Computers and Fluids 168 (2018) 285–303

Jameson [16] to the optimization of two-dimensional aerodynamic-

shape design in the late 1980s. Since then, the adjoint method has

been implemented for three-dimensional turbulent flows, and its

application has also been generalized to multipoint and multidis-

ciplinary design optimization [17–26] . While the adjoint method

is recognized as an efficient method for computing derivatives of

a solver based on partial differential equations (PDEs), success-

ful optimization requires a framework that includes other compo-

nents that go beyond the flow solution and derivative computation.

We also require modules for geometry manipulation, mesh defor-

mation, and optimization algorithms. The speed and accuracy of

such modules, especially as they pertain to derivative computation,

strongly impact the overall optimization. We have developed a full

suite of modules to facilitate aerodynamic optimization, some of

which have been published previously. The geometry-manipulation

module was developed by Kenway et al. [27] and has been used in

various aerodynamic and aerostructural design-optimization stud-

ies [26,28–31] . Perez et al. [32] developed an open source Python

interface to various numerical optimization packages that we reuse

here. 1 In the present work, we focus on the implementation of the

adjoint solver in OpenFOAM, the development of which allows the

OpenFOAM solver to be efficiently integrated into our existing op-

timization framework.

Two different methods exist for formulating the adjoint of a

flow solver: continuous and discrete [33] . The continuous approach

derives the adjoint formulation from the Navier–Stokes (NS) equa-

tions and then discretizes to obtain the numerical solution. In con-

trast, the discrete approach starts from the discretized NS equa-

tions and differentiates the discretized equations to get the adjoint

terms. Although these two approaches handle adjoint formulation

in different ways, they both converge to the same answer for a suf-

ficiently refined mesh [34] .

The adjoint method was first implemented in OpenFOAM by

Othmer [35] , who used the continuous approach to derive the ad-

joint formulation for the incompressible flow solver simpleFoam.

This continuous adjoint implementation was then integrated as

a built-in OpenFOAM solver for computing derivatives. A num-

ber of recent studies have reported shape optimization based on

derivatives computed from the continuous adjoint [36–40] . Oth-

mer’s continuous adjoint framework uses a free-form deformation

(FFD) geometry-morphing technique that can handle complex ge-

ometries such as full-scale cars. Moreover, the computational cost

for the adjoint is similar to that for the primal flow solver, allowing

one to tackle cases with more than 10 million cells [38,39] . How-

ever, they used a basic steepest descent optimization algorithm to

update the shape, so their optimization problems did not include

design constraints.

More recently, Towara and Naumann [41] reported a discrete

adjoint implementation for OpenFOAM. They used reverse mode

automatic differentiation (AD) to compute derivatives so that the

adjoint derivatives are fully consistent with the flow solution, re-

gardless of the mesh refinement. However, they used AD to dif-

ferentiate the entire OpenFOAM code, requiring all flow variables

to be stored to conduct the reverse AD computation. To reduce

the memory required to store the flow variables, the checkpoint-

ing technique was used to trade speed for memory. As a result,

the overall computational cost to compute derivatives is high—the

adjoint-flow runtime ratio ranges from 5 to 15 [42–44] . Given the

cost of this adjoint computation, it would be hard to use this im-

plementation for practical shape optimization.

Instead of applying AD to the entire code, we implement a

discrete adjoint approach where the partial derivatives in the

adjoint equations are computed by using finite differences (see

1 https://www.github.com/mdolab/pyoptsparse .

Section 2.5). The objective here is to develop an adjoint solver

within the limitations of the OpenFOAM framework that is suffi-

ciently efficient for practical shape optimization. We evaluate the

performance of our adjoint implementation in terms of speed, scal-

ability, and accuracy, optimize the aerodynamic shape of a bluff

geometry representative of a ground vehicle, and validate the opti-

mized result by comparing it with the result of wind tunnel exper-

iments. Furthermore, we demonstrate the constrained optimization

capability for two more complex shape-optimization applications:

an unmanned aerial vehicle (UAV), and a car. We opt to use the

discrete adjoint approach because the adjoint derivative is consis-

tent with the flow solution, as mentioned above. Moreover, we find

the discrete adjoint implementation easier to maintain and extend

(for example, when adding new objective or constraint functions

and boundary conditions).

The rest of the paper is organized as follows: Section 2 intro-

duces the optimization framework along with the theoretical back-

ground for each of its modules. Section 3 evaluates its performance

and presents the aerodynamic shape optimization results. Finally,

we summarize and give conclusions in Section 4 .

2. Methodology

The design-optimization framework implements a discrete ad-

joint for computing the total derivative d f/ d x , where f is the

function of interest (which for optimization will be the objective

and constraint functions, e.g., drag, lift, and pitching moment),

and x represents the design variables that control the geometric

shape via FFD control point movements. The design-optimization

framework consists of multiple components written in C ++ and

Python and depends on the following external libraries and mod-

ules: OpenFOAM, portable, extensible toolkit for scientific compu-

tation (PETSc) [45,46] , pyGeo [27] , pyWarp [27] , and pyOptSparse

[32] . The framework also requires an external optimization pack-

age, which can be any package supported by the pyOptSparse opti-

mization interface. In this section, we elaborate on the overall ad-

joint optimization framework, the theoretical background for the

framework modules, and the code structure and implementation.

2.1. Discrete adjoint optimization framework

Fig. 1 shows the modules and data flow for the optimization

framework. We use the extended design structure matrix standard

developed by Lambe and Martins [47] . The diagonal entries are the

modules in the optimization process, whereas the off-diagonal en-

tries are the data. Each module takes data input from the vertical

direction and outputs data in the horizontal direction. The thick

gray lines and thin black lines denote the data and process flow,

respectively. The numbers in the entries are their execution order.

The framework consists of two major layers: OpenFOAM and

Python, and they interact through input and output files. The

OpenFOAM layer consists of a flow solver (simpleFoam), an adjoint

solver (discreteAdjointSolver), and a graph-coloring solver (color-

ingSolver). The flow solver is based on the standard OpenFOAM

solver simpleFoam for steady incompressible turbulent flow. The

adjoint solver computes the total derivative d f/ d x based on the

flow solution generated by simpleFoam. The mesh deformation

derivative matrix (d x v / d x , where x v contains the volume-mesh co-

ordinates) is needed when computing the total derivative and is

provided by the Python layer. To accelerate computation of the

partial derivatives, we developed a parallel graph-coloring solver,

whose algorithm is discussed in Section 2.6 .

The Python layer is a high-level interface that takes the user

input and the total derivatives computed by the OpenFOAM layer

and calls multiple external modules to perform constrained opti-

mization. To be more specific, these external modules include “py-

https://www.github.com/mdolab/pyoptsparse

Download English Version:

https://daneshyari.com/en/article/7156186

Download Persian Version:

https://daneshyari.com/article/7156186

Daneshyari.com

https://daneshyari.com/en/article/7156186
https://daneshyari.com/article/7156186
https://daneshyari.com

