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a b s t r a c t 

We present a regularized version of the color gradient lattice Boltzmann (LB) scheme for the simulation 

of droplet formation in microfluidic devices of experimental relevance. The regularized version is shown 

to provide computationally efficient access to capillary number regimes relevant to droplet generation via 

microfluidic devices, such as flow-focusers and the more recent microfluidic step emulsifier devices. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the last two decades, microfluidic devices have gained a 

prominent role in several fields of research, from basic fluid dy- 

namics to material science, biomedicine, as well as industrial appli- 

cations [1–3] . In the early 20 0 0s, several pioneering works showed 

the potential of such devices for generating droplets at the mi- 

croscale with unprecedented degree of uniformity and rational de- 

sign, thereby establishing the basis of the lab-on-a-chip concept 

[4–7] . Nowadays, many publications show that the drops microflu- 

idics has surged well beyond the proof-of-concept paradigm, prov- 

ing the viability of the new approach through substantial contri- 

butions to chemistry, biology, medicine, 3d-printing, to name but 

a few [8–12] . Due to their ease of fabrication via soft lithography 

methods [13,14] , microfluidic devices are intensely exploited for 

the study and manipulation of fluids at the submillimeter length 

scale. In particular, microfluidic devices have been successfully em- 

ployed for producing porous scaffolding materials with an accurate 

control over scaffold specifications, such as pore size, shape, distri- 

bution and interconnectivity [15,16] . 

In such context, droplet generation units are the main compo- 

nents to produce emulsion templating porous materials by means 
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of microfluidic devices. Several droplet-based microfluidic chips in- 

clude at least one droplet generation unit within different geome- 

tries, alongside with droplet splitting/merging units (e.g., flow fo- 

cusing, coflow, T-, X-, and Y-junctions). Although, experiments have 

driven many of the advances in the field, many quantities of design 

interest lie still beyond experimental reach, thereby precluding a 

complete understanding of the basic physics of droplet generation 

by experimental means and thus holding back further progress in 

the operation and optimization of microfluidic devices. 

Models and simulations may provide valuable insights into ba- 

sic microfluidic mechanisms and, more specifically, computational 

studies can help to elucidate the nature of optimal flow conditions 

in terms of geometrical and physico–chemical properties, thus fa- 

cilitating a rational design of the final product. 

Over a decade ago, different numerical methods focused on the 

breakup mechanisms [17,18] , characterizing droplet formation in 

terms of the relevant dimensionless parameters [19,20] . In particu- 

lar, it was noted that by varying volume flow rates of the dispersed 

and continuous phases, and therefore changing the Reynolds and 

capillary numbers, three distinct regimes of formation of droplets 

can be identified: squeezing, dripping and jetting , three regimes 

which have been found to be consistent with experimental obser- 

vations [4,21,22] . Among other, the lattice Boltzmann (LB) method 

has played a major role in the simulation of droplet formation 

across a wide variety of microfluidic cross-junctions [20,23–26] . 
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The LB method is known to experience stability and efficiency 

limitations at both low and high viscosities [27] ; low viscosities 

threaten numerical stability, while large ones undermine the very 

hydrodynamic limit of the LB scheme, due to the onset of strong 

non-equilibrium effects. 

Different strategies can be employed to mitigate the above con- 

straints: the multirelaxation-time (MRT) method [28] , and a regu- 

larized version (REG) of the standard single-relaxation-time (SRT) 

LB scheme [29,30] , also known as Regularized lattice Bhatnagar–

Gross–Krook model, as well as the entropic version of the LB 

method [31] . 

In this paper, we investigate and demonstrate the benefits of 

the regularization procedures, as applied to the color gradient 

model [32,33] , for the simulation of microfluidic devices. 

The main idea behind the REG approach is to filter out the 

non-hydrodynamic modes, also known as ghost-modes, originating 

from non-equilibrium effects stemming from free molecular mo- 

tion between two subsequent collisions [30,34–36] , which proves 

particularly useful for microfluidic applications characterized by 

low capillary numbers. 

The paper is organized as follows. In Section 2 the lattice Boltz- 

mann equation with the BGK collisional operator is described, to- 

gether with the color gradient model and the regularization algo- 

rithm for simulating multicomponent fluids . In Section 3 the reg- 

ularization algorithm is commented and its benefits for LB simula- 

tion in microfluidics context are highlighted, while in Section 4 we 

present the results of flow-focusing simulations in two spatial di- 

mensions, as well as preliminary three-dimensional simulations of 

the newly proposed step emulsification volcano micro devices. Fi- 

nally, a summary is provided in Section 5 . 

2. Methods 

The LB immiscible multicomponent model is based on the fol- 

lowing lattice Bhatnagar–Gross–Krook (BGK) equation: 

f k i ( � x + 

�
 c i �t , t + �t ) = f k i ( � x , t ) + �k 

i ( f k i ( � x , t ) ) , (1) 

where f k 
i 

is the discrete distribution function, representing the 

probability of finding a particle of the k th component at position 

�
 x 

and time t with discrete velocity � c i . The lattice time step is taken 

equal to 1, and i the index spans the lattice discrete directions 

i = 0 , . . . , b, where b = 8 for a two dimensional nine speed lattice 

(D2Q9). The density ρk of the k th fluid component is given by the 

zeroth order moment of the distribution functions 

ρk ( � x , t ) = 

∑ 

i 

f k i ( � x , t ) , (2) 

while the total momentum ρ�
 u is defined by the first order mo- 

ment: 

ρ�
 u = 

∑ 

i 

∑ 

k 

f k i ( � x , t ) � c i . (3) 

The collision operator �k 
i 

results from the combination of three 

sub-operators, namely [33,37] 

�k 
i = 

(
�k 

i 

)(3) 
[ (

�k 
i 

)(1) + 

(
�k 

i 

)(2) 
] 
. (4) 

Here, 
(
�k 

i 

)(1) 
is the standard BGK operator for the k th component, 

accounting for relaxation towards a local equilibrium (
�k 

i 

)(1) 
f k i ( � x , t ) = f k i ( � x , t ) − ω k 

(
f k i ( � x , t ) − f k,eq 

i ( � x , t ) 
)
, (5) 

where ω k is the relaxation rate, and f 
k,eq 
i ( � x , t ) denotes local equi- 

libria, defined by 

f k,eq 
i ( � x , t ) = ρk 

[
φk 

i + w i 

(
�
 c i · � u 

c 2 s 

+ 

( � c i · � u ) 2 

2 c 4 s 

− ( � u ) 2 

2 c 2 s 

)]
. (6) 

Here, w i are weights of the discrete equilibrium distribution func- 

tions, c s is the lattice sound speed, and φk 
i 

takes values in D2Q9 

lattice 

φk 
i = 

{ 

αk , i = 0 , 

( 1 − αk ) / 5 , i = 1 , 2 , 3 , 4 , 

( 1 − αk ) / 20 , i = 5 , 6 , 7 , 8 , 

(7) 

where we number i = 1 , 2 , 3 , 4 the nearest-neighbor lattice dis- 

placements, and i = 5 , 6 , 7 , 8 the diagonal ones. In the above ex- 

pression, αk is a free parameter, modulating the density ratio γ k 

of the k th component with respect to the others [38] , as well as 

tuning its relative pressure 

p k = 

3 ρk ( 1 − αk ) 

5 

. (8) 

In this work, αk = 4 / 9 for both components, so that both compo- 

nents have the same density and speed of sound c s = 1 / 
√ 

3 . 

In this model, 
(
�k 

i 

)(2) 
is a perturbation operator, modeling the 

surface tension of the k th component. Denoting by � F the color gra- 

dient in terms of the color difference (see below), this term reads 

(
�k 

i 

)(2) 
f k i ( � x , t ) = f k i ( � x , t ) + 

A k 

2 

| � F | 
[

w i 

( � F · � c i ) 
2 

| � F | 2 − B i 

]
, (9) 

with the free parameters A k modeling the surface tension, and B k a 

parameter depending on the chosen lattice [38,39] . The above op- 

erator models the surface tension, but it does not guarantee the 

immiscibility between different components. In order to minimize 

the mixing of the fluids, a recoloring operator 
(
�k 

i 

)(3) 
is intro- 

duced. Following the approach in Ref. [38] , being ζ and ξ two im- 

miscible fluids, the recoloring operators for the two fluids read as 

follows (
�ζ

i 

)(3) 

= 

ρζ

ρ
f i + β

ρζρξ

ρ2 
cos (φi ) 

∑ 

k = ζ ,ξ

f k,eq 
i 

(ρk , 0) 

(
�ξ

i 

)(3) 

= 

ρξ

ρ
f i − β

ρζρξ

ρ2 
cos (φi ) 

∑ 

k = ζ ,ξ

f k,eq 
i 

(ρk , 0) 

(10) 

where β is a free parameter and cos ( φi ) is the cosine of the angle 

between the color gradient � F and the lattice direction 

�
 c i . It is worth 

mentioning that, in this work, we implemented the color gradient 

as: 

∇(ρζ − ρξ ) / (ρζ + ρξ ) (11) 

Note that f 
k,eq 
i 

(ρk , 0) stands for the set of equilibrium distribu- 

tions of k th fluid evaluated setting the macroscopic velocity to 

zero. In the above equation, f i = 

∑ 

k f 
k 
i 

. The LB color gradient 

model has been enriched with the so called regularization proce- 

dure [29,34,36] , namely a discrete Hermite projection of the post- 

collisional set of distribution functions onto a proper set of Her- 

mite basis. The main idea is to introduce a set of pre-collision 

distribution functions which are defined only in terms of the 

macroscopic hydrodynamic moments. All the higher-order non- 

equilibrium information, often referred to as ghosts [28] , is dis- 

carded.In equations, the regularized LB reads as follows: 

f k i (x i + c i �t, t + �t) = R f k,neq 
i 

(x, t) ≡ f k,eq 
i 

− �tω k ( f k,reg 
i 

− f k,eq 
i 

) 

(12) 

where f 
k,reg 
i 

is the hydrodynamic component of the full distribu- 

tion f k 
i 

(see [29] ) for the k th color, and R is the regularization op- 

erator. The above equation shows that the post-collision distribu- 

tion, of a 4 th -order isotropic lattice, is defined only in terms of the 

conserved and the transport hydrodynamic modes, namely density 

ρ , current ρ�
 u and momentum–flux tensor � = 

∑ 

i f i � c i � c i . 
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