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a b s t r a c t 

A high-order-accurate method for simulation of solidification is presented. The solidification front is 

tracked using a triangular, Arbitrary-Lagrangian–Eulerian moving mesh, and a mesh adaption algorithm 

is used to allow simulations of unsteady problems with large interfacial movement. An improved mesh 

coarsening algorithm is presented that maintains high quality deforming meshes while reducing the 

amount of interpolation needed to transfer solutions between meshes. An hp -finite element method is 

used to resolve the thermal and flow fields. This is combined with an A-stable diagonally-implicit Runge–

Kutta temporal scheme. The method was demonstrated to give a temporal order of accuracy near 3 by 

comparing to a 1D analytic solution of melting. The spatial accuracy was calculated to be nearly 5 th order 

for an approximation degree, p , equal to 4. Even for this simple case, the mesh adaption algorithm im- 

proved the accuracy over a simulation where the mesh only deformed. For a practical demonstration, the 

algorithm was used to simulate horizontal ribbon growth of single-crystal silicon and was able to resolve 

solutions where the solid layer thickness decreased by a factor of 20 over the course of the simulation. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Simulating solidification is important for improving industrial 

processes such as spin-casting, crystal growth, and mold filling, 

however it is often difficult because the solid-liquid interface can 

take on complicated geometries and because the property jumps 

across the interface make the solution non-smooth. Fixed grid ap- 

proaches, the most common of which is the phase-field approach 

(see review [1] ), typically allow complicated interfacial geometries 

to be simulated but with the compromise of reduced accuracy near 

the interface. Arbitrary-Lagrangian-Eulerian (ALE) moving grid ap- 

proaches provide greater accuracy near the interface but are less 

robust for problems with complex interfacial geometries. ALE for- 

mulations of solidification were first implemented in the late1970’s 

to early1980’s [2–5] . Since that time, many researchers have used 

this technique [6–13] . An advantage of using an ALE-FEM method 

is that higher-order spatial accuracy can be obtained by increas- 

ing the approximating polynomial degree ( P ). In [6,11] for example, 

the spectral element method [14,15] was used to obtain exponen- 

tial convergence for a solidification problem. The drawback to this 

approach was that it required a quadrilateral or hexahedral mesh. 
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This makes it difficult to use local mesh adaption procedures, thus 

neither of these works simulated complex interfacial shapes. 

The goal of this paper is to develop an adaptive moving grid 

approach that maintains a high-order of spatial accuracy for so- 

lidification problems with complicated interfacial shapes. To al- 

low large interfacial deformations a method for adapting moving 

meshes [16,17] is used. In [16] , it was demonstrated that the adap- 

tive/moving mesh approach could be used for crack propagation 

problems and for moving body problems with large displacements. 

However, in [16] , it was observed that the mesh coarsening compo- 

nent of the algorithm created an overly coarse mesh and “severely 

degraded” the quality of the mesh. Other authors [18,19] have ob- 

tained good results by “coloring” the vertices before coarsening 

such that only every other vertex is removed, but this is only appli- 

cable to uniform coarsening. Most authors do not discuss whether 

the coarsening operations are ordered in anyway [20–23] . Another 

factor is that, while all algorithms collapse an edge to a point, 

some collapse to a midpoint [16,19,20] while others collapse to 

an endpoint [18,22,23] . In the following, these various approaches 

are examined to determine which, if any, can create high-quality 

coarse meshes. 

To enable high-order accuracy, a continuous ALE hp -finite ele- 

ment method with triangular elements [24] is used. This method 

was demonstrated to give high-order accuracy for interfacial flow 

problems with moderate interfacial deformation. In this work, 

the approach is extended to solidification and combined with 
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Fig. 1. Schematic showing the physical domain, spatial coordinates, boundary con- 

ditions, and typical mesh. 

the adaption algorithm so that accurate solidification simulations 

can be performed with large changes in interfacial shape. An a- 

posteriori error estimate is used to set the target resolution of 

the mesh such that both the flow and temperature fields are ad- 

equately resolved. Demonstration problems include a solidification 

problem with an analytic solution where the size of the solid do- 

main changes by a factor of 2 and horizontal ribbon growth where 

the thickness of the grown solid decreases by a factor of 20. 

2. Governing equations 

The basic problem is that of a solid and liquid separated by a 

solidification interface as shown in Fig. 1 , which also shows a typ- 

ical triangular mesh used for the calculations. The domain, �, is 

subdivided into two subdomains, �s and �l , where in all of the 

following subscripts of s and l denote solid and liquid respectively. 

The governing equation in the solid is the convection-diffusion 

equation 

∂ρs c s T 

∂t 
+ 

∂ρs u j c s T 

∂x j 
+ 

∂ 

∂x j 

(
−k s 

∂T 

∂x j 

)
= 0 , (1) 

where t and x j are the temporal and spatial coordinates. Indicial 

notation is used and the problem is 2D so j ∈ [1, 2]. ρ is the density, 

c is the specific heat, k is the thermal conductivity, u j is a specified 

rigid body velocity for the solid, and T is the temperature. 

The governing equations in the liquid domain again include the 

heat equation except u j is now the liquid velocity which is deter- 

mined by the Navier-Stokes equations 

∂ρl u i 

∂t 
+ 

∂ρl u j u i 

∂x j 
= − ∂ p 

∂x i 
+ 

∂τi, j 

∂x j 
(2) 

∂u j 

∂x j 
= 0 , (3) 

where p is the fluid pressure and τ i, j are the viscous stresses. 

The viscous stresses are given by a Newtonian relationship, τi, j = 

μ( 
∂u j 
∂x i 

+ 

∂u i 
∂x j 

) where μ is the liquid viscosity. 

The solid and liquid domains are separated by the solidification 

interface, �I . Along the interface, the temperature is fixed at the 

melting temperature, T m 

, for both the solid and liquid. This guar- 

antees temperature continuity at the solidification interface. Mass 

conservation across the interface gives 

[[ ρ(u j − x j,t ) n I, j ]] = 0 , (4) 

where the double brackets indicate the jump in the quantity across 

the interface and the subscript with respect to t indicates a time 

derivative. x j, t is thus the velocity of the points on the interface. n 

is an outward normal; the change in sign for the jump is included 

by the opposite directions of the normal as defined from the solid 

and liquid domains. For this work, it is assumed that the solid and 

liquid densities are equal so that there is no jump in normal veloc- 

ity across the interface. As there is also no jump in tangential ve- 

locity, the velocity is continuous across the interface. Furthermore, 

because the solid velocity is specified, the interface is a Dirichlet 

boundary condition for the flow where the flow velocities are set 

equal to the solid velocity. 

Energy conservation across the interface gives [[(
ρcT m 

(u j − x j,t ) − k 
∂T 

∂x j 

)
n I, j 

]]
= ρs (u j − x j,t ) n I,s, j L f , (5) 

which says that the net energy flux to the interface is responsible 

for the conversion of solid to liquid with L f being the latent heat 

of fusion. 

On the boundaries of the domain denoted as �D , Dirichlet 

boundary conditions are applied for the temperature. On bound- 

aries denoted �N , Neumann boundary conditions are applied. 

Note that Dirichlet boundary conditions cannot be applied on any 

boundary that intersects the interface as this would result in in- 

compatible constraints on the temperature ( T = T m 

or T = T �D 
). 

Boundary conditions must be supplied for the fluid as well and 

these may be either Dirichlet where both components of the veloc- 

ity are fixed or Neumann where the stress on the fluid is specified. 

Initial conditions must be specified for the temperature in both the 

solid and liquid and for the fluid velocity in the liquid. Specific 

conditions will be described for each example problem presented. 

3. Numerical formulation 

To solve the above equations, unstructured triangular grids are 

generated for �s and �l that share common edges along the inter- 

face as shown in Fig. 1 . An ALE approach is used where these edges 

are moved with the interface velocity. To reduce the deformation 

of the mesh as the interface moves, the remaining vertices in the 

mesh are also moved. To allow for this motion in the governing 

equations, the physical coordinates are replaced by unsteady curvi- 

linear coordinates ξ 1 , ξ 2 , τ as follows 

x j = x j (ξ1 , ξ2 , τ ) t = τ. (6) 

This relation is used to define the mesh metrics, x i,ξ j 
as well as 

the inverse metrics ξi,x j 
and the Jacobian, J , of the transformation, 

J = x 1 ,ξ1 
x 2 ,ξ2 

− x 2 ,ξ1 
x 1 ,ξ2 

where the subscripts of x or ξ denote dif- 

ferentiation. 

The field equations are then written in a weak form using the 

streamwise-upwind-Petrov–Galerkin (SUPG) approach. For the heat 
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