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a b s t r a c t 

We propose a novel family of staggered semi-implicit discontinuous Galerkin (DG) finite element schemes 

for the simulation of axially symmetric, weakly compressible and laminar viscous flows in elastic pipes. 

The equation of state (EOS) of the fluid is assumed to be barotropic and two different mathematical 

models derived from the compressible Navier-Stokes equations are considered in this paper. 

The first model describes cross-sectionally averaged 1D flows, including steady and frequency- 

dependent wall friction effects. The novelty of our numerical method compared to standard DG schemes 

consists in the use of a staggered mesh , where the pressure is defined over a primary grid and the ve- 

locity field is defined on edge-based staggered dual control volumes. This approach is well known from 

classical semi-implicit finite difference schemes for the incompressible Navier–Stokes equations, but it 

is still quite unusual for high order DG schemes. The continuity equation is integrated over the control 

volumes that belong to the main grid, while the momentum equation is integrated over the elements of 

the edge-based staggered dual grid. The nonlinear convective terms are discretized explicitly, while the 

pressure gradient and the mass flux are discretized implicitly. Up to second order of accuracy in time 

can be achieved with the so-called θ-method. Inserting the discrete momentum equation in the discrete 

mass conservation equation leads to a mildly nonlinear algebraic system for the degrees of freedom of 

the pressure. Such mildly nonlinear systems can be very efficiently solved using the Newton algorithm of 

Brugnano and Casulli. We observe that the linear part of the mildly nonlinear system is symmetric and 

positive definite. 

The second model is derived from the compressible Navier-Stokes equations in cylindrical coordinates. 

Assuming hydrostatic flow with constant pressure inside each cross section as well as axial symmetry, 

only the terms in the axial and the radial direction need to be considered. Therefore, we call the second 

model the 2 D xr model. Also in this case we use a staggered mesh for pressure and velocity and thus 

the same philosophy as for the 1D model can be applied to obtain the discrete pressure system. For the 

2 D xr model a staggered DG scheme is also applied for the computation of the viscous stress tensor in 

the discrete momentum equation. However, in radial direction the resulting linear system for the friction 

terms is not symmetric and is thus solved using the Thomas algorithm for block three-diagonal systems. 

The use of a semi-implicit DG scheme leads to a very mild CFL condition based only on the fluid 

velocity and not on the sound speed, which makes the method very efficient, in particular in the limit 

cases when the speed of sound of the fluid tends to infinity (incompressible fluid) and in the rigid case 

where the wall strain of the pipe tends to zero. In addition, at every Newton step a symmetric posi- 

tive definite and well conditioned block three-diagonal linear system is solved for the pressure, using 

a matrix-free conjugate gradient method. Moreover, when the polynomial degree of the basis and test 

functions is equal to zero the schemes reduce to classical semi-implicit finite volume methods. 

While in the 2 D xr model the viscous effects in radial direction are directly obtained from first prin- 

ciples via the Navier-Stokes equations, the 1D model requires an additional closure relation for the wall 

friction. For both models we perform several tests in order to validate the numerical methods for steady 

and unsteady flows of compressible and nearly incompressible fluids in elastic and rigid tubes. We also 
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provide numerical convergence results in order to show that the developed schemes achieve high order 

of accuracy in space. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Pressurized flows in rigid and elastic pipes are investigated by 

many branches of applied sciences. For example, the simulation 

of blood circulation in the human cardio-vascular system is one 

of the most important topics in the field of biomedical engineer- 

ing, see e.g. [37–40,43,46] and references therein. Other important 

applications in civil engineering are networks for water supply or 

ducts in plants for the production of hydro-electric energy. More- 

over, pipe flow simulations are crucial in many industrial technolo- 

gies such as in breaking, injection and cooling systems, but also for 

oil and gas pipelines. All these examples listed above can become 

very complex and require a detailed treatment in order to be well 

understood and to be well designed. To study the fluid mechanics 

in such systems, in this paper we develop a new high order ap- 

proach based on the discontinuous Galerkin finite element method 

combined with an original staggered mesh arrangement of pressure 

and velocity and a semi-implicit time discretization in order to im- 

prove the computational efficiency, in particular in the low Mach 

number regime. The DG method has first been proposed by Reed 

and Hill in 1973 for the investigation of neutron transport [44] and 

later Cockburn and Shu extended these schemes to general systems 

of nonlinear hyperbolic equations in a famous series of papers [20–

24] . 

The DG method has been applied to the Navier-Stokes equa- 

tions for the first time by Bassi and Rebay in [3] and by Baumann 

and Oden in [4,5] . Explicit DG methods suffer from a severe sta- 

bility restriction on the time step: the higher the polynomial de- 

gree of the basis and test functions, the smaller the admissible 

time step. While for hyperbolic problems the time step decreases 

only with roughly 1 / (2 N + 1) , where N is the polynomial degree 

of the approximation, it scales approximately with 1 / (2 N + 1) 2 for 

parabolic terms. This problem can be avoided by adopting an im- 

plicit discretization of the equations. An efficient semi-implicit DG 

scheme for the compressible Navier-Stokes equations was devel- 

oped by Dolejsi and Feistauer [25] and Tumolo et al. [52] , while 

fully implicit DG methods were developed for example by Bassi 

et al. in [1,2] . All the aforementioned implicit DG schemes are for- 

mulated on collocated control volumes and so they typically require 

the solution of large sparse non-linear systems whose associated 

linear sub problems are characterized by a rather high condition 

number. In order to improve the efficiency of implicit DG methods, 

it is possible to derive semi-implicit schemes on staggered control 

volumes, which leads to linear systems with better properties. 

In the context of staggered semi-implicit finite volume and fi- 

nite difference schemes, an interesting family of methods has been 

developed for free surface flows by Casulli et al. in a series of 

papers [10–14,16,17] . The time step of these methods is only re- 

stricted by the choice of the discretization used for the nonlinear 

convective terms and the horizontal viscosity. For explicit upwind 

discretizations of the convective terms, semi-implicit methods are 

characterized by a mild CFL condition based only on the fluid ve- 

locity and not on the velocity of the surface waves. Moreover, 

the linear systems to be solved are always symmetric and posi- 

tive definite. All these features make this approach computation- 

ally very efficient. In [15] , this class of methods has been applied 

for the first time to axially symmetric flows in systems of compli- 

ant tubes. Later, scalar transport has been investigated in [51] and 

an extension to fully 3D non-hydrostatic pipe flows has been pro- 

vided in [33] . In [28,34] the compressibility of the fluid was intro- 

duced via a barotropic equation of state, including also a simple 

cavitation model as well as closure relations accounting for un- 

steady wall friction for highly transient flow regimes. Semi-implicit 

finite volume schemes for inviscid and viscous compressible flu- 

ids with general equation of state have been very recently devel- 

oped in [27] . The first high order semi-implicit DG scheme on stag- 

gered Cartesian grids for the shallow water and the incompress- 

ible Navier-Stokes equations has been developed in [26,31] . Later, 

this method was also extended to unstructured meshes [47–50] , 

as well as to space-time adaptive grids (AMR) [32] . In this paper 

we will use some of the ideas provided in the previous references 

in order to develop a new family of semi-implicit DG schemes on 

staggered grids for the simulation of viscous compressible flows in 

compliant tubes. Our new numerical schemes are applied to two 

systems of governing PDEs derived from the compressible Navier–

Stokes equations: a two-dimensional 2 D xr model assuming axial 

symmetry and a constant pressure within each cross section, as 

well as a simpler cross-sectionally averaged 1D model. The com- 

pliance of the tube wall is described in all cases at the aid of sim- 

ple algebraic elastic ring models like the Laplace law. Following the 

approach used in [26] , the schemes presented in this paper can 

be seen as the natural extension to higher order of the numeri- 

cal methods developed in [15,28,34,51] . The rest of this paper is 

structured as follows. In Sections 2 and 3 we derive the numer- 

ical methods for the 1D and for the 2 D xr model, respectively. In 

Section 4 some benchmark problems are presented where the new 

schemes are validated against available reference solutions. Finally, 

in Section 5 we give some conclusions and a brief outlook to future 

research. In this paper we also make use of the Einstein summa- 

tion convention, implying summation over two repeated indices. 

2. Staggered semi-implicit DG scheme applied to the 1D model 

2.1. Governing equations of the 1D model 

The dynamics of fluids in general time-dependent domains is 

governed by the compressible Navier–Stokes equations. Supposing 

axially symmetric flow and that the longitudinal scale is much 

larger than the radial one, it is possible to simplify the system 

and to introduce the hypothesis of hydrostatic equilibrium, i.e. the 

pressure is constant in each cross section. Moreover, we assume 

laminar flow throughout this paper. Under these assumptions one 

obtains the following one-dimensional, cross-sectionally averaged 

model that consists of two PDE, namely the continuity equation 

and the momentum equation, see [28,30,34,35,51] : 

∂ 

∂t 
(ρA ) + 

∂ 

∂x 
(ρAU) = 0 , (1a) 

∂ 

∂t 
(ρAU ) + 

∂ 

∂x 
(ρAU 

2 ) + A 

∂ p 

∂x 
= −2 πRτs − 2 πRτu , (1b) 

where t ∈ R 

+ 
0 

is the time and x is the longitudinal coordinate. In 

the above system (1) , ρ = ρ(x, t) is the density, A = A (x, t) is the 

cross sectional area, U = U(x, t) is the velocity averaged over the 

section, p = p(x, t) is the pressure, R = R (x, t) = 

√ 

A/π is the tube 

radius, while τs = τs (x, t) and τu = τu (x, t) are the steady and the 

unsteady wall shear stress, respectively. Since there are six un- 

knowns in the system (1) , four closure relations need to be intro- 

duced. The first one is the equation of state for barotropic fluids 
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