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a b s t r a c t 

We simulate flows involving porous media and homogenous fluid using a single-domain finite-difference 

numerical method. The porous medium and unimpeded fluid are separated by a sharp interface where 

a stress jump boundary condition is implemented using a forcing term. The interface is constructed by 

connecting Lagrangian markers with cubic splines, allowing for any possible porous media geometry. This 

model is particularly flexible as it can easily account for a mobile interface. We apply our method to sim- 

ulate erosion and suspension of particles from a fixed or erodible particulate deposit. The flux of particles 

entrained from the porous media is obtained from the computed velocity at the interface, in contrast to 

more common approaches that assume a flux proportional to the viscous stress at the interface. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many natural settings and industrial applications, fluid flows 

in an environment partially consisting of porous medium. Exam- 

ples where this setup occurs include rivers and oceans flowing 

over sandy deposits [1–4] , oil reservoirs and groundwater flow [5] , 

flow past porous scaffolds in bioreactors [6] and blood clot forma- 

tion [7–9] . In particular, the chemical pollution of our water re- 

sources through contaminated deposits is a significant issue [10] , 

which requires models that can predict and quantify the spread of 

chemicals removed from contaminated soil by rainfall and flood- 

ing [11] . For most geometries, only numerical solutions are avail- 

able. We present here a numerical method to simulate a system 

consisting of porous media and homogenous fluid separated by a 

sharp interface. This method is simple to implement and allows for 

a mobile interface between the porous and fluid regions. 

The interaction of a freely flowing fluid with a porous matrix is 

complex and considerable effort has been dedicated to determine 

proper treatment of the interface between the two media. One 

of the early studies of the fluid–porous boundary condition was 

done by Beavers and Joseph in 1967 [12] , where a semi-empirical 

slip velocity corresponding to a velocity jump was introduced to 

match the Navier–Stokes equations with a porous flow described 

by Darcy’s law. Neale and Nader [13] used the Brinkman equations 
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to describe the porous flow, and assumed continuous stress and 

velocity across the interface. The use of the Brinkman’s equations 

and its associated effective viscosity, has been used by numerous 

authors [14–16] since it allows for more accurate matching at the 

interface. Vafai and Kim presented an exact analytical solution for 

fluid flow at the interface by matching both velocity and stress 

[17] . A more detailed volume-averaging study led by Ochoa-Tapia 

and Whitaker [18] deduced a condition of tangential stress jump 

at the interface which has since been widely accepted and used 

in many applications [19–21] . We will therefore make use of the 

Brinkman equations to describe the flow in the porous medium, 

and of a tangential stress jump boundary condition at the inter- 

face, for more accurate results. 

Fluid–porous problems are typically solved either using a two- 

domain approach [16,22] , or a single-domain approach [23–25] . In 

a two-domain approach, two sets of coupled governing equations 

are applied to the fluid and porous regions of the domain and 

matching boundary conditions are enforced at the interface. This 

approach is more complicated to implement but provides means 

to apply a broad range of boundary conditions at the fluid–porous 

interface [26] . In a single-domain approach the entire domain is 

represented by one governing equation with variables undergo- 

ing a spatial variation across the interface [27] . This formulation 

avoids the explicit matching of boundary conditions at the fluid–

porous interface and is widely used in numerical simulations of 

thermal natural convection [28] . More recently, it was also applied 

to describe the saturation of porous media by a liquid [25] . We 
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will make use of this approach to apply a tangential stress-jump 

boundary condition at the fluid–porous interface. 

Various numerical methods have been used to solve the equa- 

tions governing flow in fluid–porous domains. Because of the com- 

plex geometries associated with porous media, finite elements 

have been widely used [19–21,29] as have finite volumes [26] . 

However many of these approaches rely on a fixed boundary be- 

tween the two media. Our proposed method is based on finite- 

difference approximations of derivatives and accurately describes 

the flow in both media while allowing for a moving interface be- 

tween the two sub-domains. The potentially mobile interface is 

defined by Lagrangian markers, whose position is governed by a 

simple differential equation. The stress-jump boundary condition 

is applied through a forcing term along the interface without re- 

quiring any matching. This approach is analogous to the immersed 

boundary method [30] and related methods used in multiphase 

flow [31–33] . There, a stress jump is imposed across a fluid–fluid 

interface, and the Navier–Stokes equations are solved on both sides 

of the interface with different parameters. Here, we employ a sim- 

ilar approach, but solve the Brinkman equations on one side of the 

interface, and the Navier–Stokes equations on the other. The im- 

mersed boundary method is often implemented using numerical 

delta functions to capture the interfacial forcing while in multi- 

phase fluid flow a Volume-Of-Fluid method is often used, which 

corresponds to an interface that is one grid-cell thick. Here, we 

will compare both implementations. 

After validating our method, we proceed to use it to describe 

the motion of fluid and particles in erosive systems where the ge- 

ometry of the surface over which currents propagate may undergo 

a continuous change. At present, a complete understanding of re- 

suspension of particles from an irregular bed of particles remains 

elusive. Direct numerical simulations have been employed to study 

the lift-off of particles in plane Poiseuille flow [4] , but such sim- 

ulations are constrained to a limited number of circular particles 

[34] . In contrast, the continuum approach used here may describe 

much larger systems. Our fluid–porous solver can also be used as 

part of a larger fluid solver to locally quantify suspension of par- 

ticles and predicting changes in surface geometry. Suspended par- 

ticles representing different type of contaminants, viruses or bac- 

teria, could also easily be traced by adding an advection–diffusion 

equation and tracking concentration fields [35] . 

The remainder of this paper is organized as follows. We first 

present the governing equations in Section 2 . Our model and 

numerical approach are described in Section 3 and validated in 

Section 4 . We discuss our results and consider an application to 

erosion with a fixed interface in Section 5 and with a moving inter- 

face in Section 6 . Finally, we present our conclusions in Section 7 . 

2. Governing equations 

We consider an incompressible Newtonian fluid flowing over a 

fixed porous medium with potentially variable permeability, see 

Fig. 1 . We make use of the continuum approach, as opposed to 

a model tracking individual particles, to allow for simulations over 

domains encompassing more particles. The homogenous fluid por- 

tion of the system is governed by the incompressible Navier–Stokes 

equations 

∇ · �
 u = 0 (1) 

ρ
(
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 u · ∇ 
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 u 
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where ¯̄T f = −p ̄̄I + μ(∇ 

�
 u + (∇ 

�
 u ) T ) is the fluid stress tensor, � u the 

fluid velocity vector, ρ the fluid density, p the pressure field, μ the 

fluid viscosity, and 
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 f a generic body force. 
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Fig. 1. Schematics of the domain under consideration. The porous medium (below) 

and homogenous fluid (above) are separated by a sharp interface � I . Flow in the fluid 

portion is described by the Navier–Stokes equations, and flow within the porous 

medium is described by the Brinkman equations. 

The equations used to describe the flow within porous media 

typically depends on the specific flow characteristics such as the 

local Reynolds number, porosity, and accuracy level desired in the 

vicinity of the boundaries. We assume here a stationary porous 

matrix, saturated by a fluid flowing with a locally low Reynolds 

number. Under these conditions, the flow adjusts instantaneously 

to changes in the boundary conditions and is well described by 

the Brinkman equations [20] 

∇ · �
 u = 0 (3) 

μ�
 u = 

¯̄κ(∇ · ¯̄T p + 

�
 f ) (4) 

where ¯̄T p = −p ̄̄I + μe (∇ 

�
 u + (∇ 

�
 u ) T ) is the stress tensor in the 

porous domain, μe is the effective viscosity inside the porous 

medium, ¯̄κ is the permeability tensor, and 

�
 f is again a generic 

body force. We note that the Brinkman equations are of second or- 

der in space, like the Navier–Stokes equations, which will facilitate 

matching at the interface, � I , separating the two sub-domains. 

For configurations containing both fluid and porous medium, 

boundary conditions have been derived to match flow quantities at 

the interface between the two sub-domains. We enforce the com- 

monly used boundary condition of continuous velocities and a tan- 

gential stress jump [18] across the interface � I , which result from 

balancing mass, momentum and energy [16] . So at the interface 

we have: 

�
 u p = 

�
 u f = 

�
 u �
 I (5) 

�
 n · ( ̄̄T f − ¯̄T p ) ·� t = 

ζμ√ 

K 

�
 u �
 I ·� t , (6) 

where � t and 

�
 n are, respectively, unit tangential and normal vec- 

tors to the interface, ζ is the stress jump coefficient, an empirical 

constant of order 1 and K = || ̄̄κ|| is the magnitude of the perme- 

ability tensor, taken for example as the square root of the sum of 

the squares of components of ¯̄κ (Frobenius norm). We note that 

the tangential velocity is only differentiable at the interface when 

there is no stress jump, i.e. when ζ = 0 . 

To model both the fluid and porous regions, we adopt here 

a single domain approach using a convex combination of the 

Brinkman and Navier–Stokes equations. To distinguish between the 

two domains, we use an indicating function M , which is set to 0 in 

the homogenous fluid and to 1 in the porous medium, as shown 

in Fig. 1 . Rather than solving separately the governing equations in 

both domains and matching them using (6) , we impose the stress 

jump boundary condition by the addition of an interfacial force, � f �
 I , 
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