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a b s t r a c t 

A lattice Boltzmann model for high-speed compressible viscous flows is presented based on the double- 

distribution-function lattice Boltzmann method proposed by Li et al. (2007). The D2Q17 circle function is 

introduced to take into account first to fourth order constraints of density equilibrium distribution func- 

tion, in order for better consistency in the heat flux and the energy dynamics. The corresponding total 

energy equilibrium distribution function is formed. The present model is tested through three problems, 

i.e., the Riemann problem, regular shock reflection problem and supersonic boundary layer problem. We 

also observe improved performance of the new model for a supersonic boundary layer problem in com- 

parison to the original coupled double-distribution-function lattice Boltzmann method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recently, the lattice Boltzmann method (LBM) [1,2] , a meso- 

scopic computational fluid dynamic (CFD) method, has become an 

outstanding numerical method for fluid flows. Different from tra- 

ditional CFD methods which are addressing the direct discretiza- 

tion of the Navier–Stokes equation, the LBM focuses on the evolu- 

tion of particle clusters. In fact, all macroscopic fluid flows emerge 

from the collective dynamics of large particle ensembles. The LBM 

shows great potential for complex phenomena due to its meso- 

scopic features and highly efficient parallel computing [3–5] . Due 

to these special features, the LBM has been employed to simulate 

various complex flows successfully, such as flows in porous me- 

dia [6,7] , electro-osmotic flow [8] , multiphase flows [9–12] , mul- 

ticomponent flows [13,14] , etc. In recent years, LBM is also ap- 

plied to many kinds of compressible flows, such as shock waves 

[15,16] , Richtmyer–Meshkov Instability [17] , Rayleigh–Taylor insta- 

bility [18] , combustion and detonation [5] , etc. However, most ap- 

plications of compressible LBM focus on inviscid cases. It is hard 

to see LBM’s application in compressible viscous flows. In order 

to advance the development of LBM for engineering applications, 

LBM should also be extended to reliably model compressible vis- 

cous flows. 

The compressible flows are ubiquitous in aerophysics, astro- 

physics, explosion physics, and other areas. It is also a kind of 
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basic flow in aerospace engineering. In fact, the theory of com- 

pressible LBM is still under development, which limits its applica- 

tion. Alexander et al. [19] presented a muti-speed LB model only 

for nearly isothermal compressible flows. Yan et al. proposed a 

model to recover the Euler equation by using more than one rest 

energy levels [20] . Kataoka and Tsutahara proposed a compress- 

ible model for Navier–Stokes equations, which has an adjustable 

specific-heat ratio [21] . Watari also proposed a model for Navier–

Stokes with flexible specific heat ratio [22] . Nevertheless, most LB 

models above are within the low Mach number limit. 

To address this limitation, several studies have attempted to de- 

velop high-speed LB models. Sun proposed an adaptive LB model 

where the particle velocities vary with the Mach number and in- 

ternal energy [23] . The model partly frees the particle velocity 

from fixed values. Yu et al. presented a LB model that has the ca- 

pability of simulating compressible flows with high Mach numbers 

up to 5.0 [24] . The basic idea of this model is to introduce an at- 

tractive force, which effectively softens the sound speed and the 

Mach number is raised remarkably. Nonetheless, this is an isother- 

mal model, its application is limited. Qu et al. proposed a LB model 

with a circular function in the phase field to replace the conven- 

tional Maxwellian function as the equilibrium density distribution 

function [25] . They formulated a D2Q13 circle function, which can 

satisfy all statistical relations needed to recover the Euler equa- 

tions. The simple circular function is effective for LBM for high 

Mach number. In fact, the D2Q13 circle function also can satisfy 

statistical relation needed to recover compressible Navier–Stokes 

equations including the pressure tensor and the momentum dy- 

namics. Li et al. developed a coupled double-distribution-function 
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Fig. 1. Discrete velocities of the D2Q17 model. 

(DDF) LB model for compressible flows with adjustable specific- 

heat ratio and Prandtl(Pr) number, and introduced the D2Q13 cir- 

cle function into the density equilibrium distribution function for 

high-speed need [26] . Wang et al. also developed a DDF-LB model 

for compressible viscous flows with flexible specific-heat ratio and 

Pr number with a different total energy distribution function [27] . 

Li and Zhong presented another kind of DDF-LB model with an ex- 

tra potential energy distribution function [28] . Gan et al. presented 

a high-speed compressible LB model by introducing an additional 

artificial viscosity [16] . Chen et al. proposed a multiple-relaxation- 

time LB model for compressible flows [29,30] , which contains more 

physical information and has better numerical stability and accu- 

racy than its single-relaxation-time version. Gan et al. presented 

a lattice Bhatnagar–Gross–Krook (BGK) kinetic model, which is a 

simple and general approach to formulate the lattice BGK model 

for high-speed compressible flows [31] . The approach is suitable 

for constructing LB models in any dimensions and the choice of 

discrete velocity model has a high degree of flexibility. 

Among the high-speed LB models mentioned above, the DDF-LB 

model proposed by Li et al. [26] is an attractive approach, since it 

has only one free parameter, which is easy to implement. Besides, 

this model can simulate fluid flows with flexible specific-heat ra- 

tios and Pr numbers. However, according to the non-equilibrium 

statistical physics, the local flow density, momentum and energy 

should be described by the same distribution function. To reduce 

this potential inconsistence of the DDF model, the D2Q17 circle 

function is introduced to replace D2Q13 circle function to take 

into account first to fourth order constraints of density equilibrium 

distribution function. The corresponding total energy equilibrium 

distribution function is formed. The implicit–explicit(IMEX) finite- 

difference scheme [32–34] is adopted to solve the discrete Boltz- 

mann BGK equation. The present LB model is tested through the 

Riemann problem, regular shock reflection problem and supersonic 

boundary layer problem. 

2. Numerical method 

2.1. Coupled DDF-LB approach 

The coupled DDF-LB approach proposed by Li et al. [26] has two 

discrete Boltzmann BGK equations for density and total energy, re- 

spectively: 

∂ f α
∂t 

+ ( e α · ∇ ) f α = − 1 

τ f 

(
f α − f eq 

α

)
, (1) 

∂ h α

∂t 
+ ( e α · ∇ ) h α = − 1 

τh 

(
h α − h 

eq 
α

)
+ 

1 

τh f 

( e α · u ) 
(

f α − f eq 
α

)
, (2) 

where the subscript α represents the lattice velocity direction, f α
and h α are the density and total energy distribution functions in 

the direction α, respectively, f 
eq 
α and h 

eq 
α are their equilibrium dis- 

tribution functions, e α is the discrete particle velocity, τ f and τ h 

are the density and energy relaxation times, and τ hf is defined as 

τh f = τh τ f / 
(
τ f − τh 

)
, u is the macroscopic velocity. The Pr number 

of the system is defined by the two relaxation times as Pr = τ f / τh . 

To recover the compressible Navier–Stokes equations including 

the diffusion term of the momentum and energy equations, f 
eq 
α

should satisfy the following velocity moment conditions: ∑ 

α

f eq 
α = ρ, (3a) 

∑ 

α

f eq 
α e αi = ρu i , (3b) 

∑ 

α

f eq 
α e αi e α j = ρu i u j + p δi j , (3c) 

∑ 

α

f eq 
α e αi e α j e αk = ρu i u j u k + p 

(
u k δi j + u j δik + u i δ jk 

)
, (3d) 

∑ 

α

f eq 
α e 2 αe αi e α j = ρu 

2 u i u j + p 
[
( D + 2 ) RT δi j + ( D + 4 ) u i u j + u 

2 δi j 

]
, 

(3e) 

where ρ is the density and p = ρRT is the pressure, in which R 

and T are the specific gas constant and the temperature. D is the 

dimension of the space, and the subscripts i, j , and k indicate the x, 

y , or z components, respectively. δij , δik , and δjk are the Kronecker 

delta functions. It should be noted that f 
eq 
α in Li et al.’s model 

[26] did not satisfy Eq. (3e) . Since, in their model, f 
eq 
α is in charge 

of the mass and momentum equations, while h 
eq 
α is for the energy 

equation. Nevertheless, according to the non-equilibrium statistical 

physics, the local flow density, momentum and energy should be 

described by the same distribution function. To reduce the poten- 

tial inconsistence of this model, we introduce D2Q17 circle func- 

tion to replace D2Q13 circle function for first to fourth order con- 

straints of f 
eq 
α . Thus, the heat flux and the energy dynamics of f 

eq 
α

are also accurate up to the Navier–Stokes level. In addition, h 
eq 
α

should satisfy the following conditions: ∑ 

α

h 

eq 
α = ρE, (4a) 

∑ 

α

e αi h 

eq 
α = ( ρE + p ) u i , (4b) 

∑ 

α

e αi e α j h 

eq 
α = ( ρE + 2 p ) u i u i + p ( E + RT ) δi j , (4c) 

where E = bRT / 2 + u 2 / 2 , b is a constant, which has the relation- 

ship with the specific-heat ratio γ as γ = ( b + 2 ) /b . 

2.2. Discrete velocity model 

Li et al. introduced D2Q13 circular function proposed by Qu 

et al. into the coupled DDF-LB model for flows with high Mach 

number [26] . In fact, f 
eq 
α based on D2Q13 circular function can 
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