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a b s t r a c t 

This paper presents the application of a Selective Frequency Damping (SFD) algorithm as an acceleration 

technique for the solution of the Euler and Navier–Stokes equations. The SFD method is implemented in a 

segregated way in a cell-centered finite volume code with added artificial dissipation. Its effect is also an- 

alyzed in combination with state of the art acceleration techniques, such as implicit residual smoothing, 

W-cycle multigrid and local time stepping. The proposed approach relies on the addition of a proportional 

feedback control and a low-pass filter to the system of equations to damp out targeted frequencies. This 

method was originally developed for the computation of the steady-state solution of unstable flows. It 

is here applied to stable cases specifically to enhance the convergence rate to steady state. The method 

is also applied to overset grid systems for which effective multigrid remains challenging. Significant im- 

provements in the residual convergence rates are found with and without using conventional acceleration 

techniques. The paper presents the implementation of the SFD algorithm. A verification of the method on 

a documented application case from the literature is performed. Then, the convergence acceleration pro- 

vided by the SFD is shown for Euler and Navier-Stokes equations on classic one-to-one grid and overset 

grid systems. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The choice of a numerical model in the field of computational 

fluid dynamics (CFD) is directed by two criteria: fidelity and com- 

putational cost. The variety of models extend from potential (in- 

viscid, incompressible and irrotational) to direct numerical simula- 

tion in which the turbulence is fully resolved. Intermediate models 

include Euler (inviscid), Reynolds-Averaged Navier–Stokes (RANS), 

Large-Eddy Simulation (LES) and hybrid RANS-LES like Detached- 

Eddy Simulation (DES). The cost of CFD simulations grows rapidly 

as turbulence scales are added to the model, as discussed by 

Spalart and Venkatakrishnan [1] . Moreover, the resolution of tur- 

bulent scales implies a time accurate solution. For RANS simula- 

tions the turbulent fluctuations are averaged and modeled, allow- 

ing for steady-state solutions, which makes them even faster to 

compute. These solutions are attractive for many engineering ap- 

plications where only mean values are required. All these factors 

contribute to the popularity of RANS models in the aerospace in- 

dustry. 
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A well-established technique to solve the Euler and RANS equa- 

tions is to integrate the equations in time until the time deriva- 

tive terms tend to zero. For this purpose, the temporal accuracy of 

the solver is not required and a wide variety of explicit and im- 

plicit time integration schemes as well as convergence accelera- 

tion methods were devised. An extensive review of the numerical 

methods for the solution of the Euler and Navier-Stokes equations 

is presented by Witherden et al. [2] . 

Explicit schemes, like the multi-stage Runge–Kutta schemes, are 

easy to implement and require low memory. However, their sta- 

bility is limited to time steps which satisfy the CFL condition. 

These schemes can be optimized to maximize the propagation 

and the damping of the transient error. To do so, hybrid multi- 

stage schemes are often used [3,4] . The implicit residual smoothing 

method [3,5–7] can also be added, allowing a higher maximum CFL 

number by a factor 2 or 3 [2] . Another approach is the enthalpy 

damping [8] which uses the fact that the enthalpy is constant for 

steady solution of the Euler equations. Thus this method is only 

applicable to inviscid flows. The convergence rate can be further 

enhanced with local time stepping by using the maximum time 

step allowable by the CFL condition in every cell of the computa- 

tional domain. The local time step can be seen as a scalar precon- 

ditioner [9] that mitigates the stiffness caused by variation of the 

cell size and spectral radius in the domain. In the same way, a ma- 
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Fig. 1. Vorticity contours and streamlines for (a) the steady solution (not converged), (b) the half domain case and (c) the full domain SFD case for the flow past a cylinder 

at Reynolds 150. 

Table 1 

Grid convergence of the force coefficients for the inviscid NACA0012 at Mach 0.5 and α = 1 . 25 ◦ . 

trix preconditioner such as a point-implicit block-Jacobi [9–11] can 

be used. These preconditioners scale the time step of each charac- 

teristic equation with their corresponding eigenvalue, allowing the 

time steps to be closer to the stability limit for each equation. A 

matrix preconditioner is especially suitable for the integration of 

the Navier–Stokes equations [9] . 

On the other hand, implicit schemes theoretically offer uncon- 

ditional stability allowing for infinite CFL numbers. In practice the 

direct inversion [12] of the implicit scheme is not used and ap- 

proximate factorization were devised. Popular approaches include 

ADI [13,14] and LU-SGS/LU-SSOR [11,15,16] . Newton–Krylov meth- 

ods such as GMRES solvers [17] can also be used, as discussed by 

Witherden et al. [2] . For sake of simplicity, explicit schemes are 

used in this paper. 

One of the most efficient acceleration techniques for Euler 

[18] and Navier–Stokes [3,7] equations is multigrid. This method 

increases the convergence rate by employing coarser grid derived 

from the fine grid. Two mechanisms are exploited to enhance the 

convergence rate. First, larger time steps can be used on the coarse 

grids, while meeting the CFL condition. Second, the low frequency 

error on a fine grid is transferred into a high frequency one on 

the coarse grid and can be damped out by the time integration 

scheme. To generate the coarse grids from a structured mesh, one 

can coarsen the grid in all the topology directions, use a directional 
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