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a b s t r a c t 

Using the structure of a recursive asymptotic analysis we derive conditions on cumulants that guarantee 

a prescribed order of Galilean invariance for lattice Boltzmann models. We then apply these conditions to 

three different lattice Boltzmann models and obtain three models with fourth order accurate advection. 

One of the models uses 27 speeds on a body centered cubic lattice, one uses 33 speeds on an extended 

Cartesian lattice and one uses 27 speeds plus three finite differences on a Cartesian lattice. All models of- 

fer too few degrees of freedom to impose the conditions on the cumulants directly. However, the specific 

aliasing structure of these lattices permit fourth order accuracy for a model specific optimal reference 

temperature. Our theoretical derivations are confirmed by measuring the phase lag of traveling vortexes 

and shear waves. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

For Eulerian (i.e. fixed grid) methods used in computational 

fluid mechanics Galilean invariance can, in general, only be ob- 

tained within a finite order of approximation. In particular the vio- 

lations of Galilean invariance in the lattice Boltzmann method are 

widely discussed in literature [1–7] . Within the limits of second 

order accuracy the problem is in general solved. However, beyond 

the second order there are several spurious dependencies of the 

solution on the frame of reference. These include: a dependance of 

the viscosity on the flow speed, spurious couplings between mo- 

ments relaxing with different relaxation rates (in the case of the 

multi-relaxation-time lattice Boltzmann model), and a phase lag in 

the advection of vortexes. The first two problems have been solved 

with the introduction of the cumulant lattice Boltzmann method 

[6] using a transformation to Galilean invariant mutually uncorre- 

lated observable quantities before collision. What has not yet been 

solved is the phase lag problem in the advection of traveling vor- 

texes in a superimposed velocity field. This error apparently can- 

not easily be removed within the usual discretization of the lattice 

Boltzmann model, at least not without introducing more discrete 

velocities than usually used. 

In order to increase the asymptotic accuracy of the lattice Boltz- 

mann method with regard to Galilean invariance to fourth order all 

velocity moments up to order four have to be sufficiently Galilean 
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invariant. This implies the application of a very large set of dis- 

crete velocities which is undesirable for reasons of efficiency. In- 

stead it is desirable to find a specific discretization that reduces 

the number of required discrete velocities. This is in theory possi- 

ble through the aliasing structure of a velocity set. Each finite set 

of velocities has an infinite number of moments of which only a 

finite number is independent. In some cases it is possible to de- 

sign a specific finite velocity set in such a way that the dependent 

moments turn out to be correct within a required order of accu- 

racy. Hence, in such a case it is not necessary to introduce new 

variables for additional discrete speeds and the computational effi- 

ciency is largely enhanced. 

In this paper we investigate different possibilities to remove 

the phase lag Galilean invariance problem of the cumulant lattice 

Boltzmann method and make the Galilean invariance of the model 

fourth order accurate. This is done here in three different ways: by 

using a different arrangement of the discrete speeds than in the 

original method; by using more speeds; and by using finite differ- 

ences to repair the original method (hybrid model). 

The reminder of the paper is organized as follows: In 

Section 2 we address the different possibilities to design lattices 

based on the cubic Bravais lattice structures. Section 3 introduces 

the recursive asymptotic analysis technique in diffusive scaling 

(where we assume that the time step scales with the square of 

the grid spacing) used for deriving equivalent partial differential 

equations of the lattice Boltzmann method. In Section 4 we give 

a brief introduction to cumulants. In Section 5 we derive condi- 

tions for Galilean invariance based on the results of the previous 

two sections. Section 6 introduces the hybrid model. Section 7 
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Fig. 1. The three cubic Bravais lattices from left to right: simple cubic (SC), body 

centered cubic (BCC), and face centered cubic (FCC). These three lattices represent 

all possible periodic configurations of space filling cubic arrangements of nodes. 

The simple cubic lattice represents the Cartesian case which is used in most lattice 

Boltzmann methods. The other two cases have also been used for lattice Boltzmann 

models: the body centered cubic lattice in Namburi’s RD3Q27 method [8] and the 

face centered cubic lattice in the d’Humières D3Q13 method [10] . 

discusses some implementation issues of the three models. 

Section 8 presents the numerical confirmation of our derivations, 

followed by Section 9 with the conclusions. 

2. Crystallographic lattice Boltzmann models 

The most commonly applied lattice Boltzmann models use a 

Cartesian distribution of nodes which, in terms of crystallographic 

unit cells, corresponds to a simple cubic configuration. Recently, 

Namburi et al. introduced a lattice Boltzmann discretization based 

on a body centered cubic unit cell and called this method “crys- 

tallographic” lattice Boltzmann [8] arguing that it was inspired by 

the Bravais lattices used in crystallographic theory [9] . However, 

we will call Namburi’s lattice body centered cubic (BCC) instead 

of crystallographic due to the fact that the usual simple cubic (SC) 

discretization is a Bravais lattice too. Yet we stick to the nomencla- 

ture of [8] and refer to the velocity distribution of the BCC lattice 

by RD3Q27 to distinguish it from the Cartesian lattice Boltzmann 

velocity distribution using 27 speed (D3Q27). 

All possible space filling crystallographic lattices can be clas- 

sified into 14 Bravais lattices of which only three are cubic and 

hence of interest for approximately isotropic discretizations (see 

Fig. 1 ). These are the simple cubic (SC) lattice, the body centered 

cubic (BCC) lattice and the face centered cubic (FCC) lattice. All 

three lattices have been used as the basis for lattice Boltzmann 

models. The popular standard Cartesian lattices with 15, 19 and 27 

speeds in three dimensions are SC lattices. Namburi’s method uses 

27 speeds on a BCC lattice and the so called D3Q13 method uses a 

FCC lattice [10–12] . 

According to the theory of Bravais lattices there is nothing be- 

yond this three possibilities, unless unsymmetrical lattices would 

be considered. 

We observed in the past that the standard cumulant lattice 

Boltzmann method with 27 speeds on a SC lattice lacks Galilean 

invariance of fourth order only in certain directions [6] . We con- 

jectured that a BCC lattice with the same number of speeds could 

be more isotropic and should hence be a better starting point for a 

complete fulfillment of fourth order accuracy of the Galilean in- 

variance. We will therefore investigate the lattice structure pro- 

posed by Namburi et al. [8] . In addition, we use a model with 33 

speeds on a Cartesian grid to enforce Galilean invariance. We also 

propose one additional model supplementing the standard D3Q27 

lattice with three finite differences to obtain Galilean invariance at 

fourth order. All lattice used in this study are shown in Fig. 2 . 

For giving an explicit definition of the used velocity models we 

introduce the following energy shells: 

E 0 = { 0 , 0 , 0 } , (1) 

E 1 = { 0 , 0 , ±1 } ∪ { 0 , ±1 , 0 } ∪ {±1 , 0 , 0 } , (2) 

E √ 

2 = { 0 , ±1 , ±1 } ∪ {±1 , 0 , ±1 } ∪ {±1 , ±1 , 0 } , (3) 

E √ 

3 = {±1 , ±1 , ±1 } , (4) 

E √ 

3 / 4 
= {±1 / 2 , ±1 / 2 , ±1 / 2 } , (5) 

E 2 = { 0 , 0 , ±2 } ∪ { 0 , ±2 , 0 } ∪ {±2 , 0 , 0 } . (6) 

The SC D3Q27 lattice uses the velocity set { i, j, k } D 3 Q27 ∈ E 0 ∪ 

E 1 ∪ E √ 

2 
∪ E √ 

3 
. The BCC lattice uses the set { i, j, k } RD 3 Q27 ∈ E 0 ∪ 

E 1 ∪ E √ 

2 
∪ E √ 

3 / 4 
and the D3Q33 lattice the set { i, j, k } D 3 Q33 ∈ E 0 ∪ 

E 1 ∪ E √ 

2 
∪ E √ 

3 
∪ E 2 . The D3Q27F3 lattice uses the same velocity set 

as the D3Q27 lattice plus three simple finite difference stencils. 

3. Recursive asymptotic analysis 

For the assessment of the convergence order of the lattice 

Boltzmann method, the rigorous approach is to apply an asymp- 

totic expansion to the lattice Boltzmann equation [13] . The lattice 

Boltzmann equation for the pre-collision particle velocity distribu- 

tion function f ijkxyzt can be written as: 

f ∗i jk (x + ic�t/ 2)(y + jc�t/ 2)(z+ kc�t/ 2)(t+�t/ 2) 

− f i jk (x −ic�t/ 2)(y − jc�t/ 2)(z−kc�t/ 2)(t−�t/ 2) = 0 . (7) 

With the lattice speed c = �x/ �t and i, j and k being the quan- 

tum numbers for particles moving in x, y and z direction. The range 

of the quantum numbers depends on the velocity set. The asterisk 

indicates the post-collision state. In order to eliminate the pre- and 

Fig. 2. The four different velocity lattices used in this study. The two lattices on the left have 27 degrees of freedom each. The two lattices on right have 33 degrees of 

freedom. The D3Q27F3 lattice is a hybrid model that uses 27 distributions together with six pseudo distributions (indicated by squares) used to compute finite differences. 
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