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a b s t r a c t 

In this paper, a re-initialization method of fluid interfaces is introduced into the Cahn–Hilliard (C–H) 

model for reducing the continuous numerical and modeling diffusion in the simulation of complex mul- 

tiphase flows. In this method, the re-initialization process is achieved through three simple steps. Specif- 

ically, the order parameter C obtained from the C–H model is first transformed into a roughly estimated 

distance function d . After that, correction of d is made by using the Hamilton–Jacobian equation. Finally, 

reconstruction of the fluid interface is then performed to enforce the profile of C to its equilibrium state. 

The re-initialization of the fluid interface is only required to be implemented occasionally so that the 

overall computational efficiency is comparable with the original C–H model. In addition to the phase 

field, the flow field is solved by using the recently-proposed multiphase lattice Boltzmann flux solver. 

Numerical validations of the proposed method have been carried out by simulating a shearing droplet, 

Rayleigh–Taylor instability of binary-layered fluids and droplet splashing on a thin film. Good agreements 

have been achieved with the data published in the literature. The obtained results also show that the 

present method not only reduces numerical and modeling diffusion substantially but also is able to ac- 

curately capture small yet important interfacial structures, such as entrapped air bubbles for the droplet 

splashing on a thin film. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

The diffuse interface (DI) method, also known as the phase- 

field method, has been developed into an effective and powerful 

numerical tool for simulating a variety of multiphase flows [1–6] , 

such as microfluidics in channels, moving contact lines, breakup 

and coalescence phenomenon associated with droplets and bub- 

bles and phase change procedures. The wide application of the DI 

method may be attributed to its simplicity and effectiveness in 

representing and dealing with complex interfacial structures be- 

tween different phases. In the DI method, the fluid interface is 

represented as a thin diffuse layer spreading on several compu- 

tational grids, where flow properties such as density and viscosity 

are assumed to change smoothly. Mathematically, the diffuse layer 

is indicated by the so-called order parameter, for which physical 

models and governing equations are derived from an energy vari- 

ation/minimization approach. Based on the physical models pro- 

posed, various numerical algorithms for the DI method have been 

developed and continuously refined for different multiphase prob- 

lems [6–14] . 
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In earlier numerical studies, the well-known H-Model [7] at- 

tracted considerable attentions due to its good performance in the 

simulation of density-matched fluid flows. In this incompressible 

model, the volume-averaged velocity is introduced and assumed 

to satisfy the divergence-free condition in the whole flow field 

including the interfacial zone, and the Cahn–Hilliard equation is 

solved for the order parameter. Later, this model was extended 

for the simulation of more challenging two-phase incompress- 

ible flows with large density ratios [8,9] . For instance, Boyer pro- 

posed a generalized model for incompressible mixture flows [8] , 

which is well validated by simulating the benchmark of Rayleigh–

Taylor instabilities and droplet splashing on a thin film. Ding et al. 

[9] also derived the Cahn–Hilliard model from the mass conserva- 

tion law for simulating flows of binary fluids with large density 

ratios and viscosity ratios. Effective and high-resolution numerical 

method is introduced for their proposed model, which successfully 

simulated several challenging two-phase fluid flows, such as bub- 

ble rising, head-on collisions of binary droplet and the on-set of 

droplet entrainment. As compared to the incompressible model, 

the quasi-incompressible model [10] , which allows slightly com- 

pressible mixture inside fluid interfaces, has been also proposed by 

introducing the mass-averaged velocity and enforcing mass conser- 

vation law for the flow field. Well-known examples in this cate- 
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gories include those of Refs [11,12] , which have also been widely 

applied. 

Both incompressible and quasi-incompressible DI models have 

been widely applied in many complex interfacial flow problems 

[1,15–17] . They share the same feature that the order parameter 

is applied to indicate the fluid interface and track its evolutions. 

One of the most important parameters in the DI simulations is the 

interface width. It not only affects the numerical accuracy of the 

phase-filed models [18,19] but also is of direct relevant to mass 

conservation properties of the method [3,18,20] . In the DI model, 

the interface width is passively controlled by an artificial parame- 

ter proportional to grid spacing and usually involves several com- 

putational grids, on which the profile of the interface is resolved 

numerically. It is quite common that the fluid interface obtained by 

numerical simulations may be overly diffused or sharpened due to 

numerical diffusions or convections. However, it is usually prefer- 

able to keep the interface profile as close as the equilibrium state 

in numerical simulations so that the DI method can be accurately 

implemented [18] . Although it is very challenging to achieve this, 

many effort s [19] have been recently made in this aspect. Two 

main strategies are applied. One way is to increase grid resolu- 

tions locally or globally for the phase field. Essential examples in 

this category include the DI method on the adaptive grid [21] and 

the dual-resolution grid [19] . These methods are able to keep the 

phase interface sharp but do not guarantee the interface profile 

in the equilibrium state. The other way is to develop improved 

DI models by introducing correction terms into the CH equation 

[18] . Li et al. [18] proposed a modified C–H model with an in- 

terfacial correction term and their results showed good accuracy 

as compared with the original C–H model. It is also noticed that 

the introduced additional term does not conserve mass exactly in 

theory. 

Up to now, the DI method still can not guarantee its solution 

being equal or close to the equilibrium profile in the normal direc- 

tion of the fluid interface, which is a necessity for accurate com- 

putation of positions of fluid interfaces and surface tension forces 

[18] . If one looks into the details of solution obtained by the DI 

method, the interface can be diffused and flattened too much in 

some regions, while in some other regions it may be overly com- 

pressed and sharpened, leading to numerical instability. As a con- 

sequence, the surface tension force may not be accurately com- 

puted and the mass of the system cannot be conserved theoreti- 

cally or numerically. In many multiphase flow problems, the relax- 

ation time of the fluid interface to its equilibrium state is usually 

smaller than the marching time used in numerical simulation by 

the C–H model. More importantly, the surface tension force model 

used by the DI method is not accurate when the profile of the 

fluid interface is far away from its equilibrium state. It is there- 

fore desirable to re-initialize the fluid interfaces to their equilib- 

rium state in numerical simulations so that the accuracy of the DI 

method can be improved. In this work, a re-initialization method 

for the phase field is proposed and examined for simulating in- 

compressible multiphase flows with complex topological changes. 

In the method, the equilibrium interface profile for the order pa- 

rameter is used for re-initialization, which will be conducted by 

introducing a distance function. The flow field is predicted by us- 

ing the recently proposed multiphase lattice Boltzmann flux solver 

[22,23] and the interface is obtained by solving the C–H equation 

directly. Since the re-initialization process is only performed occa- 

sionally, the overall computational efficiency of the present method 

can be retained but the accuracy can be improved. Several nu- 

merical examples, including the shearing droplet, Rayleigh–Taylor 

instability and droplet splashing on a thin film, have been suc- 

cessfully simulated to verify the improvements of the proposed 

solver. 

2. Methodology 

2.1. Diffuse interface method with re-initialization of phase interface 

2.1.1. Cahn–Hilliard model for interface capturing 

For effective simulation of multiphase flows with complex in- 

terfacial changes, the DI method usually applies the Cahn–Hilliard 

model, whose governing equations can be written as: 

∂C 

∂t 
+ ∇ · ( u C ) = �∇ 

2 μC , (1) 

where C ∈ [0, 1] is the order parameter used to indicate interfacial 

positions; � is the mobility, μC represents the chemical potential 

for fluid-fluid or fluid-wall interfaces, which is a non-linear func- 

tion of the order parameter C : 

μC = 2 βC ( C − 1 ) ( 2 C − 1 ) − κ∇ 

2 C. (2) 

Here the constants β and κ are determined by the surface ten- 

sion coefficient σ and the interface thickness parameter ξ : 

κ = 

12 σ

ξ
; β = 

3 

2 

σξ . (3) 

The local density ρ for each phase of the fluid can be obtained 

through a linear combination of the heavier and lighter fluids ( ρH 

and ρL ) via the order parameter C : 

ρ = ρL + 	ρ · C; 	ρ = ρH − ρL (4) 

2.1.2. Re-initialization of phase interface for the Cahn–Hilliard model 

With the C–H model, the fluid interface can be captured by nu- 

merically solving Eq. (1) , for which different schemes have been 

proposed [7,9] . Since the fluid interface in multiphase flows is 

both temporally and spatially dependent, numerical discretization 

in space and time is equally important. To maintain spatial stabil- 

ity, upwind schemes are usually applied to discretize the convec- 

tive term ∇ · ( u C ) and central schemes are used for the diffusive 

term �∇ 

2 μC . To accurately track the temporal evolution of inter- 

faces, implicit schemes or explicit schemes, such as the third order 

TVD (Total Variation Diminishing) Runge–Kutta scheme, for ∂ C / ∂ t 
can be adopted. Following our previous work [23] , the fifth-order 

weighted essentially non-oscillatory scheme (WENO) is applied to 

discretize the convection term ∇ · ( u C ) and the second-order finite 

difference scheme is applied to discretize �∇ 

2 μC . 

Another important issue is that, when the C–H model is used, 

it is preferable to maintain the fluid interface as its equilibrium 

state (a hyperbolic tangent profile) so that mass conservation can 

be achieved at least in theory and surface tension force can be ac- 

curately computed [18] . The mathematical expression for a phase 

interface, which is derived from the equilibrium state of a one- 

dimensional interface, can be given by: 

C ( d ) = 

1 

2 

[
1 + tanh 

(
2 d 

ξ

)]
(5) 

where d is a signed distance function. It may be noted that, even 

if high order schemes are applied for Eq. (1) , numerical results of 

fluid interfaces can be expanded or compressed too much due to 

successive numerical errors in long time computations. This means 

that the profile of the interface may deviate largely from its equi- 

librium state indicated in Eq. (5) . As a consequence, mass diffusion 

can be severe and the computation of surface tension may lead to 

inaccurate results. To remove this drawback, re-initialization of the 

fluid interface to its equilibrium state can be an effective method, 

which will be presented below. 

The basic idea of the re-initialization method introduced in this 

work can be described as follows: 1) at the time step t = t n , the or- 

der parameter C used to represent the fluid interface is first trans- 

formed into a signed distance function d , which is accurate at the 
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