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a b s t r a c t 

In this paper we present the results of the numerical simulation of a three-dimensional current-driven 

sediment transport process. In detail, the temporal evolution of a barchanoid dune is studied. Two phe- 

nomena are treated in this context. First, the three-dimensional flow of a single phase fluid is considered. 

Second, the interaction of the flow and the sediment bed with its morphological change of the sedi- 

ment surface is taken into account. We numerically solve the instationary incompressible Navier–Stokes 

equations, an advection diffusion equation and Exner’s bed level equation to update the sediment bed 

morphology. Here, Exner’s equation determines the change of the bed level due to the bed load. The sus- 

pended material is treated as a sediment concentration and its movement is modelled by an advection- 

diffusion equation. To secure the continuous interchange between bed load and the suspension load sink 

and source terms are used. Both equations are discretised and explicitly coupled to the discrete fluid 

model. The typical sedimentary processes and the sedimentary form of a prototypical barchanoid dune 

are well captured by our numerical simulation, which is supported by a qualitative comparison with ex- 

amples from the literature. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Sediment transport processes and their effects on the morphol- 

ogy of the sediment bed are significant issues in hydraulic engi- 

neering. Usually, the physical processes of the formation of dunes 

and other sedimentary forms are studied in laboratory flumes or in 

field experiments. These time-intensive and costly studies are not 

always easy to conduct. At this point, a numerical simulation can 

help to reduce costs and to provide more insight and therefore a 

better understanding of the relevant flow and transport phenom- 

ena. 

There are different classifications of dunes in the aeolian regime 

as well as in the fluvial regime. For example, linear dunes, cres- 

cent shaped dunes, e.g. parabolic or barchanoid dunes, and star 

shaped dunes demonstrate the large diversity of dune forms. Here, 

the availability of sand, its consistency, the predominant wind sit- 

uation and many other factors determine the dune type, compare 

[24] . In general, the sediment is transported in the bed load layer 

over the dune body upwards the upstream slope. When the sand 

particles are transported to the top end of the dune, the particles 

slide down the downstream slope, which is limited by the angle of 
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repose. In case of a barchanoid dune, the transport velocities are 

higher near the lateral ends of the dune body. This fact leads to 

a faster transport of the sand at the sides of the dune body and 

to the development of sand horns, which are transported further 

downstream. The resulting dune body and the involved processes 

are strictly three-dimensional. We present a numerical approach 

for their simulation and discuss the obtained results. 

The remainder of this paper is organised as follows. In 

Section 2 , we describe the full fluid-sediment-model, which con- 

sists of the Navier–Stokes equations, a suspension load model, and 

Exner’s bed level equation. In Section 3 , we shortly discuss our nu- 

merical discretisation and its properties. In Section 4 , we present 

the results of our numerical simulation for the temporal evolution 

of a barchanoid dune. A conclusion is given in the fifth section. 

2. Model: Navier–Stokes, sediment transport and surface model 

The used model comprises a three-dimensional fluid model and 

the sediment equations, which realise the suspension load trans- 

port and the morphological change of the sediment surface. Parts 

of the presented models were previously studied in the litera- 

ture, e.g. [17,23,33–35,41] . Some authors already combined a two 

or three dimensional fluid solver with a sediment model for the 

morphological change ( [4,34,35] ) or the suspension load [5 , 41] . 

https://doi.org/10.1016/j.compfluid.2018.02.018 

0045-7930/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.compfluid.2018.02.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.02.018&domain=pdf
mailto:burkow@ins.uni-bonn.de
https://doi.org/10.1016/j.compfluid.2018.02.018


276 M. Burkow, M. Griebel / Computers and Fluids 166 (2018) 275–285 

Fig. 1. The sediment surface is described for each time point t by its height h ( x p ) 

with x p = (x 1 , x 3 ) , i.e. the distance from an underlying plane P = (x 1 , x 3 ) . Thus, the 

fluid domain �f is bounded by h ( x 1 , x 3 ) from below. 

In this chapter, we introduce a full three dimensional loosely 

coupled algorithm for all three models. 

2.1. Navier–Stokes equations 

Due to the complex three-dimensional character of sedimentary 

bedforms and especially dunes, it is necessary to apply a full three- 

dimensional model. Here, the instationary incompressible Navier–

Stokes equations in their dimensionless form read as 

∂u 

∂t 
+ ∇ · (u � u ) = 

1 

F r 2 
g − ∇p + 

1 

Re 
�u , (1a) 

∇ · u = 0 on � f ∈ R 

3 , (1b) 

where u is the velocity, p is the pressure, g are the volume forces, 

and �f denotes the domain of the fluid body. Moreover 

Re = 

u ∞ 

· l 

ν
(2) 

denotes the Reynolds number and 

F r = 

u ∞ √ 

g · l 
(3) 

denotes the Froude number. Both, Re as well as Fr , are dimen- 

sionless numbers which characterise the flow conditions. The char- 

acteristic length and velocity are denoted by l and u ∞ 

, respec- 

tively. As usual, ν stands for the kinematic viscosity of the fluid. 

As boundary conditions no-slip Dirichlet boundary conditions 

u = 0 (4) 

and slip Neumann boundaries conditions 

∂ u 

∂n 

= 0 (5) 

are applicable at the boundary of the fluid domain �� f 
. 

2.2. Sediment surface and the Exner’s bed level equation 

The Navier–Stokes equations are solved on a time-dependent 

fluid domain �f whereas the bottom of this domain is bounded 

for each time point by its sediment surface h ( x 1 , x 3 ). This sediment 

surface h describes the height of the underlying sediment with re- 

spect to a reference plane P = (x 1 , x 3 ) , compare Fig. 1 . To model 

the temporal change of the sediment surface h , we use the bed 

level equation postulated by Exner [19] , i.e. 

∂h 

∂t 
+ ∇ (x 1 ,x 3 ) · q s (τ (u )) = 0 on P, (6a) 

∂h 

∂n 

= 0 on �P , (6b) 

where q s ( τ( u )) is the transport rate function of the sediment and 

the gradient operator with respect to ( x 1 , x 3 ) is denoted by ∇ (x 1 ,x 3 ) 
. 

The transport functions q s depends on the shear stress τ , which is 

a function of the fluid velocity u , where τ ( u ) is here just needed 

on the sediment surface. In the Neumann boundary condition 

(6b) the normal is denoted by n . The Exner equation states that 

the net balance between gain and loss of mass in a certain con- 

trol volume results in a change of the sediment height h . It was 

successfully used in several studies to investigate the evolution of 

geomorphological change, e.g. [34,35,43,44] . The presented model 

results from the conservation of mass and therefore from first prin- 

ciples. Moreover, Coleman and Nikora [10] used a statistical aver- 

aging process of a granular bed over time and space to derive the 

Exner equation. 

The sediment surface determined by h denotes implicitly the 

fluid domain �f . Thus, a change in h results in a change of the 

fluid domain �f . Several models for the shear stress τ : R 

3 �→ R 

2 

and the transport rate function q s : R 

2 �→ R 

2 are available in the 

literature, see [6] . In the following, we choose the empirically de- 

rived models (7a) and (7b) 

q s = ε 
√ 

(s − 1) gd 3 
50 

·
(

4 τ (u ) 

ρ f (s − 1) gd 50 

− τ ∗
) 3 

2 

, (7a) 

τ (u ) = 

1 

8 

ρ f f | u | 2 , (7b) 

where ρs denotes the sediment density, d 50 is the median grain 

size, τ ∗ is the dimensionless critical shear stress and s = ρs /ρ f 

with ρ f being the fluid density. Note, that the bed load includes a 

porosity constant ε which describes the density of the packing of 

the grains. The friction parameter in (7b) is set according to Chan- 

son [6] as 

f = 

64 

Re 
. (8) 

Chanson [6] proposed formula (7b) as a modified version of the 

transport formula from [39] , which has been validated by numer- 

ous experimental studies. Wong and Parker [53] gave a nice sum- 

mary and analysis of (7a) . Note, that we do not apply any slope 

correction in the bed load calculation as proposed in the literature, 

compare [8] . Later, in Section 2.6 we use a slope limiting algorithm 

which distributes the masses according to the slope. 

2.3. Suspension load model 

The suspension load comprises all material which is transported 

in the whole fluid. An advection-diffusion model is used to de- 

scribe the transport of the suspended material. 

Since only very fine grains are transported, the common ap- 

proach is to model the entrained material as a concentration c of 

mass in the fluid domain. Similar to the bed level equation, the 

advection-diffusion model for the suspended material can be de- 

rived from the conservation of mass and momentum. Malcherek 

[36] presented a suspension model as 

∂c 

∂t 
+ u · ∇c + w g 

∂c 

∂x 2 
= K�c c( x , t) : � f × [0 : T ] −→ R , 

(9a) 
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