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a b s t r a c t 

We present a lattice Boltzmann model designed for the simulation of dilute and dense finite-sized rigid 

particle suspensions under applied shear. 

We use a bottom-up approach and fully resolve the mechanical interaction between fluid and parti- 

cles. Our model consists in coupling a lattice Boltzmann scheme for Newtonian and incompressible fluid 

flows with an immersed boundary scheme to simulate two-ways fluid-particles interaction. We introduce 

a simple yet robust contact model that includes repulsive elastic collision between particles, and neglects 

lubrication corrections. We apply this model to simple sheared flow with rigid spherical particles and we 

provide results for the relative apparent viscosity of the particle suspension as a function of the particle 

volume fraction and strain rate of the flow. 

We show that, using the proposed approach, there is no need for a lubrication model in the Newto- 

nian regime, provided that an elastic contact model is included. Our algorithm, therefore, can be based 

only on physically sound and simple rules, a feature that we think to be fundamental for aiming at re- 

solving polydispersed and arbitrarily shaped particle suspensions. 

Comparing our results with Krieger–Dougherty semi-empirical law, we confirm that the simulations 

are not sensitive to the particle Reynolds number for Re p � 1 in the Newtonian regime. We show that 

the proposed model is sufficient to obtain a correct description of the rheology of particle suspension 

up to volume fraction equal to 0.55 (approaching the critical random packing fraction for monodispersed 

spheres), which goes beyond the state of the art. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

The fundamental investigation of dense particle suspensions 

finds its application in several fields of applied science and en- 

gineering as, amongst others, blood rheology [1] , food technol- 

ogy [2,3] , concrete and mortar properties [4] . A great challenge 

in this field of research is to improve the understanding of the 

rheological properties of such suspensions in increasing com- 

plex physical scenarios. An important example of that is magma 

flow. 

Magma is a multicomponent mixture of silicate melt and crys- 

tals ( i.e. crystals bearing magma) that, while evolving (changes 

in pressure and temperature), can also experience the exsolu- 

tion of volatiles and form a three phase suspensions ( i.e. crys- 

tals and bubbles bearing magma). The rheology of magmas has 

been extensively investigated experimentally and it has been found 
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that magma exhibits non-Newtonian behavior at both high par- 

ticle volume fraction φ and/or strain rate ˙ γ (see [5,6] ). Experi- 

mental investigations focused on determining the rheology of bub- 

bles and crystals bearing magmas also exists (refer to Mader et al. 

[6] for instance). However the complex non-linear interaction be- 

tween the three coexisting phases substantially increases the com- 

plexity of magma rheology characterization. In this context, nu- 

merical modeling of increasingly complex magma-like suspensions 

may reveal fundamental to improve our understanding of magma 

rheology. 

As a first step to build such a tool, a two-phase (fluid and parti- 

cles) scenario is considered in this article. In particular, to validate 

our approach, it is crucial that the rheological behavior of the sim- 

ulated particle suspension follows the Krieger–Dougherty law [7] , 

that relates the relative apparent viscosity μr of the suspension to 

the particle volume fraction φ as: 

μr = 

(
1 − φ

φM 

)−BφM 

, (1) 
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with φM 

the maximum packing fraction. Throughout all this study, 

we used B = 2 . 5 , which is a common value for rigid spheres [8–

11] . Eq. (1) is widely used and proves to be in good correlation 

with experimental data [6,8,12] . 

Moreover, as a first step to model particle suspensions that 

mimic a magmatic environment, one should reproduce as much as 

possible a viscous (particle Reynolds number, Re p � 10 −3 ), strongly 

coupled (Stokes number, St � 1) regime [6] . The particle Reynolds 

number of a suspension Re p is defined as Re p = ρ f r 
2 ˙ γ /μ0 , where 

ρ f is the density of the suspending fluid phase, r is the particle 

radius, ˙ γ is the strain rate and μ0 the viscosity of the pure fluid 

phase. Similarly, using the density ρs of the solid phase (particles), 

the Stokes number of the flow reads St = ρs r 
2 ˙ γ /μ0 and character- 

izes the coupling between solid and fluid phases. 

Particle suspension dynamics is often simulated including rhe- 

ological parametrization for non-Newtonian fluids into Navier–

Stokes equations (see [13–15] ). Our goal here is to develop a more 

fundamental model, in which the non-Newtonian viscosity of the 

suspension emerges naturally from the interaction between a New- 

tonian fluid ( i.e. the melt) and the particles it contains ( i.e. the 

crystals). LB is a well suited technique for reaching such a goal 

due to its capability to deal with complex physics and geometry 

(see [16,17] for instance). Indeed, our choice of LB method is dic- 

tated by our desire to eventually develop a three phase magma 

model, for instance two immiscible fluids (where LB is known to 

excel [18] ) interacting with moving solid particles. 

To the best of authors’ knowledge, LB works targeted to model 

particle suspension under magmatic flows conditions do no ex- 

ist. However, many LB works aiming at achieving direct numerical 

simulation of particles suspensions have been published and sev- 

eral are the methods proposed to simulate moving solid bound- 

aries. In [19–21] , a generalization of the bounce-back rules for 

moving boundaries is developed. The immersed boundary (IB) 

method [22,23] , based on a Lagrangian point of view, is an alter- 

native that is increasing in popularity [24,25] . In the present pa- 

per, we focus on a multi-direct forcing approach of IB which has 

recently been adapted to the field of LB methods [26] and that we 

think particularly well suited to the case where multiphase fluid 

phases may interact with each other and the solid particles. 

In the LB literature for particle suspensions, excellent agree- 

ment with theory has been reported in [11] for φ < 0.5. In [27] , the 

authors investigate particle suspension up to φ < 0.2. On the same 

line, Kulkarni and Morris [28] simulate suspensions with φ ≤ 0.3. 

While the aforesaid works all use rigid spheres as suspended par- 

ticles, [29] , coupling LB to a finite-element method for particle de- 

formation, simulate deformable spheres as well as blood platelets 

and obtain good results for φ < 0.5. In [30] , a wide range of parti- 

cle shapes are simulated and shows good agreement with other 

authors, and different lubrication models are compared. Whilst 

the aforementionned authors incorporate lubrication correction to 

their numerical models over a wide range of flow parameters, it 

should be mentioned that Shakib-Manesh et al. [10] provide good 

results with no lubrication model. It is thus a priori unclear if a 

lubrication correction should be used in the type of flow targeted 

by the present study. 

Probably due to its less straightforward implementation, the IB 

method has been used more sporadically in this field. In [1] good 

results using IB method for spherical and deformable platelets par- 

ticles are presented, while Bogner [31] apply it to a large number 

of spherical particles, yielding correct results for φ < 0.4. 

Some of the aforementioned LB studies obtain good agreement 

with the experimental data. However, for what concerns the rel- 

ative apparent viscosity μr as a function of φ, it seems still dif- 

ficult to properly model the case of very high particle concentra- 

tions, where φ is approaching the maximum packing fraction φM 

( φM 

≈ 0.64 in the case of spheres). In particular, no work reports 

convincing results for φ > 0.5. The investigation of such relation- 

ship is one of the main goals of this work. 

Finally, in [8] , it is stressed that slight differences in the hy- 

potheses on which the contact and/or lubrication model are based 

result in substantially different outputs. A similar observation is 

done in [32] , where the authors remark how, at high particle vol- 

ume fraction, models results are extremely sensitive to nonhydro- 

dynamic interparticle forces. The authors conclude, therefore, that 

the most crucial point for a successful particle suspension simu- 

lation is to employ a proper contact model. This point of view is 

supported by several works studying the impact of interparticle in- 

teraction on suspensions rheology. Therefore, it seems to be critical 

to us to be able to achieve realistic simulations using a minimum 

number of modeled ingredients. 

2. Method 

In this work we resolve the Navier-Stokes equations for an in- 

compressible fluid using a Bhatnagar-Gross-Krook (BGK) single re- 

laxation time collision model [33] with a D3Q19 topology. We used 

the Palabos open-source library [34] for all the simulations pre- 

sented. 

Many physical properties of magma are difficult to simulate: in 

the context of this work, the most extreme one is the high vis- 

cosity of the silicate melt (from 10 −1 Pa · s to 10 6 Pa · s approxi- 

mately, depending on the melt composition [35] ) that makes the 

flow Reynolds number Re extremely low. Indeed, for Re � 1 and 

for fixed lattice spacing �x and relaxation time τ , the lattice time 

step �t has to be kept very small because τ is directly related to 

the viscosity. Discussions on the scaling of �t for low Re can be 

found in [1,36] . In this study, we kept the value τ = 1 and adapted 

�t consequently (see Section 2.4 for a detailed description of the 

parameters). 

2.1. Fluid-Solid coupling 

Here we represent particles as rigid bodies whose motion, in 

absence of particle-particle interaction, follows the classical laws 

of mechanics as determined solely by the interaction between the 

fluid and a solid body. We model that by using the multi-direct 

forcing IB scheme [37] , following the implementation presented in 

[26] . 

As a benchmark for our implementation, we used Jeffery’s so- 

lution for the angular velocity ˙ ϕ of an ellipsoid with aspect ratio 

r e in a shear flow with strain rate ˙ γ [38] : 

˙ ϕ = 

˙ γ

r 2 e + 1 

(
r 2 e cos 2 ϕ + sin 

2 ϕ 

)
, (2) 

and the period T of the ellipsoid reads T = 2 π(r e + 1 /r e ) / ̇ γ . 

In Fig. 1 , we show the normalized angular velocity ˙ ϕ T / 2 π
about the vorticity vector for several different ellipsoids simulated 

with our IB implementation against the reference solution. 

2.2. Contact model 

A common approach (see [11,30,32,39] for instance) to the 

modeling of particle-particle interaction makes use of two steps: 

1) a lubrication model, which is a sub-grid model accounting for 

the non-resolved pure hydrodynamic effect of increasing repul- 

sive force, that a particle experience while it approaches another 

solid boundary [40] , and 2) an additional contact model for very 

close particles, supplying the lubrication model, which fails for 

very small gap between boundaries [8,11,30] . In some cases a third, 

non-physical model for extremely close or interpenetrating parti- 

cles is also used [11] . 
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