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a b s t r a c t 

The phase field method is developed to solve free boundary problems (e.g., solid-liquid phase change) 

without tracing phase interface positions in microscope and mesoscope based on the Ginzburg–Landau 

theory. Besides, different from the classical Stefan problem, surface tension allowing for the possibility 

of undercooling (or superheating) effect is introduced for the more realistic physics in the phase field 

method. In the present study, a phase field model is established and a feasibility study of the phase field 

model on the macro scale is done through two classical problems: the conduction solid-liquid phase 

change problem and the convection melting problem. Some results are obtained and model validation 

is carried out by comparing the results with the Neumann solutions and the classical correlations, re- 

spectively. It is found that the results obtained by the phase field model agree well with those of the 

benchmark solutions on the whole, but some differences, for example, delay of interface moving and un- 

dercooling (or superheating) effect, exist if the effect of surface tension is obvious. It’s concluded that the 

phase field method is a reliable method to simulate more realistic solid-liquid phase change problems no 

matter whether natural convection is considered or not on the macro scale. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Solid-liquid phase change problems are a kind of free bound- 

ary problems and have been studied extensively in mathematics, 

physics, material science and other research areas for more than 

a century. The governing equations for general solid-liquid phase 

change problems are as follows [1] : 

ρc p 
∂T 

∂t 
= k ∇ 

2 T in � (1) 

ρL V n = k [ ∇T · n ] 
−
+ on � (2) 

s ( T − T m 

) = −σ ( κ + αV n ) on � (3) 

The Eqs. (1) –(3) together are well known as the modified Stefan 

problem. When σ is set to be zero, Eq. (3) is reduced to 

T = T m 

(4) 

The Eqs. (1) and (2) together with (4) are then called the clas- 

sical Stefan problem. 

In recent years, as the demand for efficient latent energy stor- 

age and advanced material casting technology increases, the re- 

search on solid-liquid phase change problems is still of great sig- 
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nificance, which then promotes the development of relevant nu- 

merical computation methods further. At present, the numerical 

computation methods of solid-liquid phase change problems are 

mainly divided into four categories: the front tracking method [2–

4] , the level set method [5–7] , the enthalpy method [8–10] and 

the phase field method [11–13] . In the front tracking method, the 

solid-liquid interface is treated explicitly by a distinguished repre- 

sentation, while each phase is modeled separately. However, the 

interface morphology that can be treated in the front tracking 

method is usually relatively simple. Different from the front track- 

ing method, the solid-liquid interface can be treated implicitly in 

the level set method, the enthalpy method and the phase field 

method by which the interface with complex morphology can be 

treated more easily. In the level set method, interface normals and 

curvatures are still needed to be calculated accurately. As for the 

enthalpy method, a key feature of it and its variants is that the dis- 

tinguishability of phases is based on the temperature alone. That 

is to say, the enthalpy method is derived from the classical Stefan 

problem and surface tension that causes undercooling (or super- 

heating) effect is not taken into consideration. 

The phase field method is a relatively new modeling method for 

phase change problems and has experienced an increasing interest 

in material science and other areas because of its fundamental ori- 

gins and advantages. Originated from the Ginzburg-Landau theory, 

an ordered parameter is introduced to separate solid and liquid 

phases. Asymptotic analyses have been done rigorously to demon- 

strate that as interface thickness approaches zero, solutions to the 
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Nomenclature 

T Temperature, °C 

c p Specific heat capacity, J kg −1 K 

−1 

K Thermal conductivity, W m 

−1 K 

−1 

V n Interface velocity, m s −1 

n Unit vector normal to the interface (positive if di- 

rected toward the liquid) 

L Latent heat per mass, J kg −1 

S Entropy density difference between solid and liquid, 

J m 

−3 K 

−1 

H Height/width of the cavity, m 

X Cartesian axis direction, m 

y Cartesian axis direction, m 

u Velocity along x direction, m s −1 

v Velocity along y direction, m s −1 

p Pressure, Pa 

g Gravitational acceleration, m s −2 

t Time, s 

a Thermal diffusivity, m 

2 s −1 

Ste Stefan number 

Fo Fourier number 

Ra Rayleigh number 

Nu Nusselt number 

Pr Prandtl number 

h Heat transfer coefficient, W m 

−2 K 

−1 

Greek Symbols 

� Bulk domain 

� Solid-liquid interface 

ρ Density, kg m 

−3 

σ Surface tension, J m 

−2 

κ Curvature, m 

−1 

ξ Characteristic length, J 1/2 m 

−1/2 

α Kinetic coefficient, s m 

−2 

μ Dynamic viscosity, Pa s 

ν Kinematic viscosity, m 

2 s −1 

β Thermal expansion coefficient, K 

−1 

φ Ordered parameter 

ε Interface thickness, m 

τ Dimensionless time 

λ Root of the transcendental equation 

Subscripts 

m Melting point 

n Normal to the interface 

c Reference point 

l Liquid phase 

s Solid phase 

phase field equations formally approach those of the modified Ste- 

fan problem expressed in Eqs. (1) –(3) so that a more realistic solid- 

liquid phase change process can be modeled by the phase field 

method [14] . However, the application of the phase field method is 

largely limited to the meso and micro scale, for example, dendrite 

growth, because the interface thickness is usually on the atomic 

scale and this will result in enormous and unrealistic computation 

burdens on the macro scale, especially for 2D and 3D computation. 

In addition, fluid flow plays an important role in the melting 

and solidification process, because it can influence interface mor- 

phology and temperature distribution. Several excellent trial stud- 

ies on the phase field method coupled with convection have al- 

ready been done during the past few years. Tong et al. [15] , Beck- 

ermann et al. [16] and Boettinger et al. [17] proposed phase field 

models to investigate the dendrite growth under forced convec- 

Fig. 1. Schematic diagram of the two-region solidification process in a semi-infinite 

space. 

tion, considering the effect of convection velocity, flow direction 

and anisotropy on dendrite morphology and growth behavior. Tön- 

hardt and Amberg [18] performed a 2D simulation of succinonitrile 

(SCN) dendrite growth in a natural convection environment. Chen 

and Lan [19] further explored the effect of natural convection on 

three dimensional dendrite growth. However, the previous studies 

on the phase field method coupled with convection are still limited 

to the meso and micro scale and the relatively systematic study 

coupled with convection on the macro scale hasn’t been carried 

out yet. 

In this paper, a two dimensional phase field model for solid- 

liquid phase change problems in which natural convection can be 

taken into consideration is established to study the feasibility of 

the phase field method on the macro scale through two classi- 

cal problems: the conduction solid-liquid phase change problem 

and the convection melting problem. Some results obtained by the 

phase field model, including interface position evolution, temper- 

ature distribution, average Nusselt number evolution and so on 

are compared with the Neumann solutions of the classical Stefan 

problem and the classical scaling correlations of Nusselt number 

of melting with natural convection in a square cavity, respectively. 

2. Physical problem description 

2.1. Conduction solid-liquid phase change problem 

The conduction solid-liquid phase change problem is to solve 

the interface position evolution and temperature distribution in 

melting or solidification without convection. The initial conditions 

for pure phase change materials determine whether the problem 

will be classified into one- or two-region problems further [20] . 

The analytical solutions to the classical Stefan problem exist in a 

limited number of idealized situations involving semi-infinite or 

infinite regions, simple boundary and initial conditions, and so on. 

Such analytical solutions are also called the Neumann solutions. 

Here, the two-region solidification process in a semi-infinite space 

is taken as an example to study the feasibility of the phase field 

model on the macro scale. The schematic diagram is shown in 

Fig. 1 . 

The liquid at a uniform temperature T 0 ( T 0 > T m 

) is confined 

to a half-space x > 0. At time t = 0, the boundary surface at x = 0 

is lowered to a temperature T b ( T b < T m 

) and maintained at T b in 

the following time. As a result, the solidification starts at the sur- 

face x = 0 and the solid-liquid interface propagates in the positive 

x direction. The Neumann solutions of the two-region solidification 

process in a semi-infinite space are given as follows. 

Interface evolution: 

X ( t ) = 2 λ
√ 

a s t (5) 

Temperature distribution in solid phase: 

T s ( x, t ) = 

er f 

(
x 

2 
√ 

a s t 

)
er fλ

( T m 

− T b ) + T b (6) 
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