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a b s t r a c t 

The heat conduction between two infinite parallel plates is numerically simulated based on a kinetic 

relaxation model for one-dimensional flows. For this purpose, two distribution functions which depend 

only on longitudinal velocity are introduced to avoid the multiplicity of integrals. The kinetic model equa- 

tions in terms of newly defined functions are used to investigate one-dimensional heat transfer between 

two walls of constant temperature ratio. Generalization of the kinetic models allows the correct estima- 

tion of the heat flux for arbitrary Prandtl numbers. The steady solutions are compared with the results 

of the exact Boltzmann equation to validate the possibility of applying the present kinetic models. The 

temperature jumps near the solid surface are naturally achieved by the difference of the particle dis- 

tributions from a local equilibrium state. It is shown that the relative temperature jumps at both plate 

surfaces increases as the Knudsen number of the flow increases. The temperature profiles by means of 

the generalized kinetic models agree well with those of the exact Boltzmann equation for various Knud- 

sen numbers. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Boltzmann kinetic equation, which describes the nonlinear 

evolution in a gas flow, has been solved for numerous applications. 

Since the equation can provide temporal microscopic distributions 

of gas particles, the direct methods for solving this equation are 

the most natural and definite way of studying the time evolu- 

tion process for rarefied gases. However, this kinetic equation is 

extremely difficult to handle in complex processes because of its 

intractable nature of binary collision operator. Both the mathemat- 

ical difficulty in evaluating the collision integrals and the problem 

of multi-dimensionality have been challenging issues for applying 

the numerical solution of the Boltzmann equation into engineering 

problems. 

The direct simulation Monte Carlo (DSMC) method, which was 

initiated by Bird [1–4] , is one of the most popular approaches for 

solving the Boltzmann kinetic equation in an indirect manner. The 

direct Monte Carlo simulation is characterized by the random es- 

timation of velocity grids to describe the nonequilibrium parts of 

the distribution function. Owing to its simplicity, the Monte Carlo 

method has been successfully used for the simulations in which 

experiment cannot be easily conducted [5–10] . However, the DSMC 
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method requires many spatial grid points to obtain reliable results 

for simulating high-density flows. Different from this statistical ap- 

proach, the method based on direct integration has recently been 

revealed that it is possible to provide uniform accuracy for com- 

puting a wide range of Knudsen numbers without very detailed 

meshes [11] . 

The direct numerical approach of solving the Boltzmann ki- 

netic equation was firstly proposed by Nordsieck and Hicks [12] in 

the 1960s. The methodology utilizes the Monte Carlo evaluation 

of the integral over a finite region of velocity space, but treat- 

ment of the collisions between unlike species was not included 

in the study. Aristov and Tcheremissine elaborated the conserva- 

tive method for solving the Boltzmann equation [13–15] , in which 

the number of particles, momentum, and energy of gas are au- 

tomatically conserved at every time step. Rykov [16] proposed a 

method of averaging of the Boltzmann kinetic equation over the 

transverse velocities for the simulation of one-dimensional flows. 

Rykov and Shil’tsov [17] then adopted the conservative scheme 

to the averaged kinetic equations for conserving the macroscopic 

fluxes of molecules. Since 1970s, some improvement to this con- 

servative method has been made in solving the Boltzmann kinetic 

equation, and this approach has been successfully applied to sim- 

ulate simple three-dimensional gas flows and recondensation of a 

multi-component mixture [11,18,19] . 
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For practical purposes, it is convenient to replace the collision 

integral by a relaxation term with the aid of a mean free path 

treatment. This relaxation model equation [20] expresses that col- 

lisions among particles tend to relax the distribution function to 

a local equilibrium state with a damping frequency. Since this re- 

laxation approximation of the integral terms was proposed based 

on a simple physical assumption, it is hard to guarantee that the 

kinetic model is valid to describe the important features of the 

kinetic processes. Recently, there have been some theoretical at- 

tempts to develop a method of solving the kinetic relaxation model 

by preserving the main features of the exact equation [21–23] . 

The methodology of solving the generalized version of the kinetic 

model, which was constructed by Shakov [24–26] , not only ensures 

the conservation properties, but also includes the Prandtl number 

correction of the heat fluxes. 

In the present study, the steady process of the one-dimensional 

heat transfer flows between two infinite parallel plates was inves- 

tigated based on the solution of the relaxation models. The heat 

conduction between two solid surfaces of fixed temperatures has 

already been studied by various kinetic methods, such as the DSMC 

method [2] , the direct numerical method based on the exact equa- 

tion [27,28] , and the four moment method [29] . Here, the method 

of directly solving the generalized kinetic models was applied to 

describe the evolution of monatomic gas in a rarefied gas flow. 

Two distribution functions in terms of only longitudinal velocity 

were newly defined to reduce the computational cost in the evalu- 

ation of multiple integrals. The relationship between the tempera- 

ture jump and the Knudsen number of the flow was numerically 

analyzed by the direct solution of the boundary-value problem. 

The predicted results were compared with those of other kinetic 

approaches, and the possibility of applying the generalized kinetic 

models was verified. 

2. Numerical methods 

The distribution function f ( t, x , ξ) of a monatomic gas is as- 

sumed to evolve according to the generalized Krook model (S- 

model) [24] . This model kinetic equation is obtained from the ap- 

proximation to the collision term in the Boltzmann transport equa- 

tion as follows 

∂ f 

∂t 
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∂ f 

∂x 
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(
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))
. (1) 

Here, ξ x is the particle velocity of gas in the x -direction, ν is 

the collision frequency, and the local equilibrium state f + is de- 

termined from the moments of the distribution function for the 

velocity phase space [23] . 
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Here, f M 

is the locally Maxwellian distribution, n is the number 

density of gas, U is the longitudinal velocity, T is the temperature, 

q x is the heat flux, and Pr is the Prandtl number. 

It is convenient to introduce two different distribution functions 

which are independent of the magnitude of the transverse veloci- 

ties. 
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These distribution functions are calculated with the integration 

of f over all possible values of ξ y and ξ z , so that the system of 
kinetic equations can be obtained in terms of the functions ϕ and 

ψ . 
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For boundary-value problem, the steady solution of the kinetic 

model equations can be achieved by the following iterative pro- 

cesses. 
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The different finite-difference method is applied according to 

the sign of the ξ x β , which represents the particle velocity at the 

β-th segment of velocity space. 
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The solution of differential equation in terms of ψ is obtained 

by the same finite-difference method for both collisionless flow 

and relaxation stage. 

The moment relations [16] between the macroscopic flow prop- 

erties with the functions ϕ and ψ are expressed as follows 
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3. Results and discussions 

This section deals with the heat transfer in a rarefied gas be- 

tween two parallel plates of a constant temperature ratio, which 

is one of the classical kinetic problems. The steady solution of 

the one-dimensional heat transfers was numerically investigated 

by means of the direct solution for the generalized kinetic mod- 

els. The computational domain for the one-dimensional boundary- 

value problem is considered as a finite segment of length L . 

The space between the two plates is assumed to be filled with 

monatomic gas, so that it is not necessary to consider the vibra- 

tional frequency in the kinetic model equations. Since monatomic 

gas is only considered, the Prandtl number corresponding to the 

generalized kinetic models was set to 2/3. The correlation between 

the collision frequency ν and the Knudsen number of the flow, 

which is a ratio of the mean free path to the characteristic length 

L , is in the following form [23] 

ν = 

8 

5 
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π
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Kn 

nT 

μ
. (8) 

Here, μ is the dynamic viscosity, which is assumed to be 

a function of temperature only and is proportional to T 0.5 for 

monatomic hard sphere gas. 

The solid surfaces at x = 0 and x = L have fixed temperatures T 0 
and T L , respectively, and the temperature ratio between the cold 

wall and the hot wall is also assumed to be given during the so- 

lution of the equations. The boundary conditions for the functions 
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