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a b s t r a c t 

The generation of a turbulent spot by an unstable wave packet propagating in a Mach-6 flat-plate bound- 

ary layer is considered. The asymptotic shape of the wave packet is obtained in the far field from the 

excitation point using linear stability theory. Unsteady boundary conditions are formulated for direct nu- 

merical simulation. They allow for excitation of a well-developed wave packet with specified amplitude, 

skipping the linear growth stage. Robustness of these boundary conditions for modeling of the nonlinear 

breakdown of unstable wave packets into turbulent spots is examined. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Turbulization of the boundary layer flow on a hypersonic ve- 

hicle (HV) leads to significant increase of viscous drag and heat 

flux to the surface. Therefore, laminar-turbulent transition (LTT) is 

a key problem for design of modern super- and hypersonic flight 

vehicles. There are various scenarios of LTT depending on free- 

stream parameters and external disturbance spectra [1] . Free flight 

of HV usually suggests small level of external disturbance and 

smooth walls of relatively low wall-to-edge temperature ratios. Un- 

der these conditions, the LTT process involves the three stages: (1) 

receptivity of the boundary-layer flow to external disturbances, (2) 

exponential growth of instabilities (normal modes) in the bound- 

ary layer, (3) nonlinear breakdown to turbulence. The wall cooling 

is known to stabilize the first mode (predominantly oblique waves 

related to Tollmien–Schlichting waves at low speeds) and destabi- 

lize the second mode (predominately plane waves with their fronts 

being normal to the free stream). 

A state-of-the-art method for engineering applications to pre- 

dict the transition onset is the e N method [2,3] . It is assumed that 

Abbreviations: LTT, Laminar-turbulent transition; LST, Linear stability theory; 

DNS, Direct numerical simulation; LN, HN, Cases of lower and higher values of N - 

factor. 
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the boundary layer disturbances are equally excited all over the 

body surface and have a wide spectrum. Physical situations, where 

this assumption is valid, could be transition induced by solid par- 

ticulates, distributed roughness and kinetic fluctuations [4] . 

In many cases the nonlinear breakdown goes through birth, 

growth and merging of initially localized patches of turbulent flow, 

also referred to as turbulent spots. The flow has an intermittent 

behavior [5] . An intermittency factor γ is introduced as a portion 

of time when the flow is turbulent at a given point. Numerous ex- 

perimental investigations (see reviews [6–8] ) showed that a typical 

turbulent spot has roughly a triangular shape, and its propagation 

is described by the three parameters: leading and trailing edge ve- 

locities U le , U te and spreading half-angle β1/2 ( Fig. 1 ). 

Assuming that turbulent spots are originated in a narrow re- 

gion near the transition onset point x = x t , Narasimha [9] derived 

a simple approximation of intermittency distribution for a two- 

dimensional flat plate flow: 

γ ( x ) = 1 − exp 

(
− nσ

U ∞ 

( x − x t ) 
2 
)
, x > x t . 

Here n is the spot birth rate per unit length, σ is the shape (or 

propagation) factor which is calculated as [10] : 

σ = tan 

(
β1 / 2 

)
·
(

U ∞ 

U te 
− U ∞ 

U le 

)
. 

Similar relationships were derived for conical mean flows [11] . 

Fischer [6] summarized experimental data and showed that 

β1/2 decreases with Mach number. Experiments [12] in quiet wind 
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Nomenclature 

( x, y, z ) Streamwise, wall-normal and spanwise Cartesian 

coordinates 

( u, v, w ) Velocity components 

σ Shape (or propagation) factor of a turbulent spot 

T r Recovery temperature 

M Mach number 

Re Reynolds number 

α, β , ω Streamwise and spanwise wavenumbers, circular 

frequency of disturbance 

c Phase speed of disturbance 

x 0 Neutral point 

S Eikonal, S = ∫ x x 0 
α( ω, β, ̃  x ) d ̃  x 

N N -factor, N = −S i 
ˆ A s Normalized vector of disturbance eigenfunction 

x in x -coordinate of the input boundary (beginning of 

a truncated computational subdomain) 

ɛ Maximum of the wall pressure disturbance enve- 

lope, p ′ w 

( t, z, x in ) , (wave packet hump) 

� [ f ], � [ f ] Real and imaginary parts of complex quantity: f = 

� [ f ] + i · � [ f ] 

Superscript 
∗ Dimensional value 
′ Fluctuation (disturbance) 

Subscript 

e Boundary layer edge 

∞ Free stream 

0 Isentropic stagnation value 

w Wall 

s Saddle point 

r, i Real and imaginary parts of a complex quantity 

tunnels ( M e ≈ 6, T w 

/ T 0 ≈ 0.69) partially confirm the results [6] . 

However, the value of β1/2 is defined ambiguously in [12] . It is 

overpredicted for all considered definitions of the turbulent spot 

edges. Significant scattering of β1/2 from 2 ° to 14 ° was observed in 

high-enthalpy tunnels [13,14] ( M e = 5 , T w 

≈ 0 . 17 T e ). 

Numerical simulations [15–21] show that the wall-to-stagnation 

(recovery) temperature ratio T w 

/ T 0 ( T w 

/ T r ) has a dramatic impact 

on a turbulent spot shape. The spot has a distinct triangular form 

at the adiabatic wall condition, T w 

= T r . For the cold wall condition, 

T w 

= T e , the spot is elongated in x -direction: β1/2 and U te decrease, 

while U le remains almost constant. Herein, the lateral spreading 

angles may differ significantly from Fischer’s data [6] . Estimations 

of the shape factors σ from available numerical and experimental 

data are summarized in Fig. 2 , with the assumption that U le = 1 , 0 

and U te = 0 , 5 for Fischer’s data. The low supersonic data ( M e < 3) 

[17,22] are well correlated except one point predicted numerically. 

However, it is obvious that available data are insufficient to ap- 

proximate σ for hypersonic boundary layers. 

Fig. 1. Schematic view of turbulent spot propagation. 

Table 1 

Free-stream parameters. 

M ∞ Re T ∞ T w / T ∞ T w / T 0 Pr 

6 10 6 300 К 1 ≈ 0.12 0.72 

Computations [15–18] assumed that the development of a tur- 

bulent spot does not depend on the history of its formation. The 

spots are excited almost instantaneously by a vortical source lo- 

calized in the boundary layer. However, a natural turbulent spot 

forms differently. It is resulted from the wave packet, which, in 

turn, forms at the linear stage of instability growth and amplifies 

to a certain critical level. To our knowledge, this was taken into 

consideration in one series of experiments [12,23,24] as well as 

in the numerical simulations [19–21,25–27] , where a wall-localized 

blow–suction boundary condition was used to generate unstable 

wave packets. To capture linear, nonlinear and turbulent stages of 

the wave-packet development, the computations were performed 

in long computational domains with grids having about 5 × 10 8 

nodes (e.g. [25] ). Nevertheless, such domains and grids are still in- 

sufficient to obtain a well-developed turbulent spot and investigate 

its dynamics. 

In this paper, it is suggested to simulate the linear stage of un- 

stable wave packets with the help of the linear stability theory 

(LST) and the e N method. Using eigenfunctions of the dominant 

instability predicted by LST, the unsteady boundary conditions are 

derived in order to induce a wave packet in a given station. This 

condition is used as an inflow boundary condition for direct nu- 

merical simulations (DNS) of the nonlinear stage of LTT. Since the 

linear stage is omitted and corresponding lengthy part of computa- 

tional domain is no longer present in DNS, the computational cost 

is reduced dramatically. The approach is applied to the develop- 

ment of second-mode wave packets in the boundary-layer flow on 

a flat plate at the free-stream Mach number M ∞ 

= 6 . 

2. LST wave packets 

Consider a supersonic flow of a compressible viscous gas past 

a flat plate with a sharp leading edge. The axes ( x, y, z ) are di- 

rected streamwise, normal to the wall and spanwise, respectively 

(illustrated in Fig. 1 ); the line ( x, y ) = ( 0 , 0 ) coincides with the 

plate leading edge. The Navier–Stokes equations are considered 

in the non-dimensional form: ( x, y, z ) = ( x ∗, y ∗, z ∗) / L ∗, t = t ∗U 

∗∞ 

/ L ∗, 

( u, v , w ) = ( u ∗, v ∗, w 

∗) /U 

∗∞ 

, p = p ∗/ ( ρ∗U 

∗2 ∞ 

) , T = T ∗/T ∗∞ 

, where L ∗ is 

a characteristic length scale. Reynolds number Re = U 

∗∞ 

ρ∗∞ 

L ∗/μ∗∞ 

is assumed high enough to neglect the effects associated with 

viscous-inviscid interaction; i.e. the bow shock wave is weak and 

the free-stream parameters (see Table 1 ) are approximately equal 

to those at the upper boundary-layer edge. The Sutherland’s law is 

used to approximate the dynamic viscosity coefficient: 

μ∗ = μ∗
∞ 

T ∗∞ 

− S ∗

T ∗ − S ∗

(
T ∗

T ∗∞ 

)3 / 2 

, 

where S ∗ = 110 . 4 K. For LST analysis, the mean-flow profiles 

U ( η), T ( η), η = y ( Re/x ) 1 / 2 are obtained using a self-similar solu- 

tion of zero-gradient compressible boundary layer equations (com- 

pressible Blasius solution). The Navier–Stokes solution shows that 

the upper-edge flow parameters are very close to the correspond- 

ing free-stream parameters: R e e (x ) −R e ∞ 

R e ∞ 

< 0 . 0076 , 
T ∗e (x ) −T ∗∞ 

T ∗∞ 

< 0 . 0085 

and −U ∗e (x ) −U ∗∞ 

U ∗∞ 

< 0 . 0 0 06 at x > 1. This leads to the excellent agree- 

ment of the mean-flow profiles (solid lines in Fig. 3 ) with the cor- 

responding profiles of Navier–Stokes solution (symbols). 
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