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a b s t r a c t 

In this work the use of high-order linearly implicit Rosenbrock-type two-step peer schemes has been 

investigated to integrate in time the high-order discontinuous Galerkin space discretization of the incom- 

pressible Navier–Stokes equations. 

The aim of the present paper is (i) to describe the implementation of the schemes in the DG code MI- 

GALE with focus on the computation of the set of the coefficients and the starting procedure, (ii) to 

describe the coupling of the scheme with an adaptive time-step strategy in order to investigate its effect 

on the robustness and computational efficiency of the simulations, and (iii) to provide some practical 

informations regarding the choice of the “optimal” time integration for LES and DNS on the basis of the 

requested accuracy. Peer schemes, up to sixth order, have been considered and compared with traditional 

one-step linearly implicit Rosenbrock, up to fifth order, and ESDIRK, up to fourth order, schemes available 

in literature in terms of accuracy and computational efficiency. For the sake of completeness, the sets of 

coefficients of the schemes here considered have been reported in an appendix. 

The reliability, robustness and accuracy of the proposed implementation have been assessed by com- 

puting the Prothero–Robinson example, the laminar travelling waves solution on a doubly periodic unit 

square domain and the laminar flow around a circular cylinder for a Reynolds number Re = 100 . Travel- 

ling waves and cylinder testcases have been also modified to investigate the behaviour of the schemes 

with time-dependent boundary conditions. In the former case replacing periodic boundary conditions 

with given boundary condition based on the analytical solution, while in the latter case considering a 

rotating cylinder. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years the potential of high-order methods has been 

deeply investigated to perform turbulent unsteady simulations 

based on RANS equations, DNS, and LES. In this context DG meth- 

ods, due to their favourable dispersion and dissipation properties, 

proved to be very well suited for DNS [1–3] , LES [4,5] , and hy- 

brid RANS-LES approaches [6] . Consequently, renewed attention 

has been paid to the analysis and development of time integra- 

tion schemes to couple the high-order discretization both in space 

and time, and of space-time DG methods [7,8] . 
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Some features of the DG methods, e.g. compactness and flexibil- 

ity, can be advantageous both for explicit and implicit time integra- 

tion approaches. Explicit schemes can achieve a very high accuracy 

[9–11] but are limited by time-step restriction. Otherwise, implicit 

schemes, although memory consuming due to the need of the Ja- 

cobian matrix, can be A -stable and L -stable even for high order of 

accuracy. Several implicit high-order time integration schemes, re- 

lying on multistage and multistep schemes, have been developed 

and succesfully coupled with the DG spatial discretization, such as 

linearly implicit Rosenbrock-type Runge–Kutta schemes ( A -stable 

up to order five) [12] , Explicit Singly Diagonally Implicit Runge- 

Kutta (ESDIRK) schemes ( A -stable up to order five) [13] , Modified 

Extended BDF (MEBDF) schemes ( A -stable up to order four) [14] , 

and Two Implicit Advanced Step-point (TIAS) schemes ( A -stable up 

to order six) [15] . The higher order versions of the Rosenbrock 
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schemes, as shown in [13] , turned out to be the more efficient, re- 

quiring to solve only linear systems in the stages within each time- 

step, i.e. the Jacobian matrix needs to be assembled and factored 

only once per time-step. The other schemes at each time-step re- 

quire to solve several non linear systems of equations, a task that 

can be efficiently performed, for example, by means of the quasi- 

Newton method. 

However, Rosenbrock methods may suffer from order reduc- 

tion for very stiff problems [16,17] . To overcome this limitation, 

recently, a new type of linearly implicit Rosenbrock-type time in- 

tegration schemes called peer schemes has been proposed in liter- 

ature [16] . Such methods take a linear combination of stage values 

to approximate the exact solution at intermediate points. All stage 

values have the same order of accuracy and the same stability 

properties, which is the reason for calling the methods “peer”, and 

this is in contrast to one-step schemes, where intermediate stages 

solutions have lower order than the final solution. Peer schemes up 

to order eight are available and are characterized by good stability 

properties, strong damping properties at infinity without further 

restrictions and robustness with respect to step-size changes. Fur- 

thermore, due to their linearly implicit structure, only linear sys- 

tems have to be solved in each time-step. Since all stage solutions 

have the same accuracy and stability properties, a continuous high- 

order output is also available with no extra-cost. As all multi-step 

schemes, peer schemes are non self-starting and, thus, they need a 

starting procedure in order to obtain required initial solutions. 

The aim of the present paper is (i) to describe the imple- 

mentation of high-order linearly implicit Rosenbrock-type two-step 

peer schemes in the DG code MIGALE [6,18] for the time inte- 

gration of the incompressible Navier–Stokes (INS) equations, (ii) 

to describe the coupling of the schemes with an adaptive time- 

step strategy in order to investigate its effect on the robustness 

and computational efficiency of the simulations, and (iii) to pro- 

vide some practical informations regarding the choice of the “op- 

timal” time integration scheme for LES and DNS on the basis of 

the requested accuracy. Furthermore peer schemes have been com- 

pared with traditional one-step Rosenbrock and ESDIRK schemes: 

the fourth order/six stages (ESDIRK46) [19] , the third order/three 

stages (ROS3PL) [20] , the fourth order/six stages (RODASP) [21] and 

the fifth order/eight stages (ROD5_5) [22] linearly implicit Rosen- 

brock schemes [23] available in literature in terms of accuracy and 

computational efficiency. 

The reliability, robustness and accuracy of the proposed im- 

plementation have been assessed by computing the Prothero–

Robinson example, the laminar travelling waves solution on a dou- 

bly periodic unit square domain, and the laminar flow around a 

circular cylinder for a Reynolds number Re = 100 . Travelling waves 

and cylinder testcases have been also modified to investigate the 

behaviour of the schemes with time-dependent boundary condi- 

tions. In the former case replacing periodic boundary conditions 

with given boundary condition based on the analytical solution, 

while in the latter case considering a rotating cylinder. 

The paper is organized as follow: Section 2 , after a brief intro- 

duction on the traditional one-step time integration schemes used 

for comparison, describes peer schemes with focus on the com- 

putation of the set of the coefficients and the starting procedure. 

Furthermore, this section describes the adaptive time-step strat- 

egy considered in this work. Numerical results are described in 

Section 3 , while conclusions in Section 4 . Finally Appendix A re- 

ports the set of the coefficients of the traditional one-step schemes. 

2. Time discretization 

The discrete problem corresponding to the DG discretization of 

the incompressible Navier–Stokes equations can be written as: 

̂ M 

d Q 

dt 
+ R ( Q ) = 0 , (1) 

where Q is the global vector of unknown degrees of freedom, R 

the residuals vector, and 

̂ M the global block diagonal mass matrix 

with the block corresponding to the pressure degree of freedom 

null. Eq. (1) defines a system of non-linear Differential Algebraic 

Equations (DAEs). 

2.1. ESDIRK schemes 

This class of Runge-Kutta schemes can be constructed to be A −
and L −stable for any temporal order of accuracy. A s −stage ESDIRK 

scheme, applied to Eq. (1) , can be written as 

̂ M Q 

i = 
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a i j R 

(
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(2) 

where a ij are the Butcher coefficients of the scheme, β i the frac- 

tion of the time-step corresponding to each stage i , and 

ˆ b i the co- 

efficients to obtain the embedded solution. Table 11 summarizes 

the coefficients of fourth order/six stages ESDIRK46 scheme and its 

embedded method. The first stage is explicit ( a 11 = 0 ) and the last 

stage defines the solution for the next time-step [19] . The solu- 

tion 

ˆ Q 

n +1 
of the embedded method is obtained from Eq. (2) re- 

placing a si with 

ˆ b i . The scheme corresponding to Eq. (2) for non 

autonomous problems, i.e. problems with time-dependent bound- 

ary conditions, is obtained replacing R 

(
Q 

j 
)

by R 

(
t j , Q 

j 
)

with t j = 

t n + β j �t n . Each non-linear stage of the ESDIRK schemes is solved 

by means of an iterative Newton–Krylov method. The k th Newton–

Krylov iteration entails the solution of the following linear sys- 

tem: ( ̂ M 
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(3) 

The analytical Jacobian matrix J is here computed at the beginning 

of the simulation and recomputed only if the convergence rate of 

the quasi-Newton method between iteration k and k + 1 decreases 

below a given tolerance or after 10 time-steps since the last eval- 

uation, i.e. 

‖ �Q k +1 ‖ 2 

‖ �Q k ‖ 2 

> tol J or n �t = 10 , 

where tol J is a tolerance which is set to 0.2, n �t the number of 

time steps after the last Jacobian computation and ‖ �Q k ‖ 2 the L 2 

norm of the solution increment at the k − th Newton iteration. Due 

to the peculiar treatment of the convective numerical flux [24] , J k 
has non null entries for pressure degrees of freedom. It follows 

that, despite the singularity of matrix ̂ M , linear systems can be 

solved with standard algorithms. The linear system arising at each 

Newton step is solved using the GMRES algorithm preconditioned 

with the block Jacobi method as available in the PETSc library [25] . 

In this work the GMRES relative tolerance is set to tol GMRES = 10 −2 

for ESDIRK46 scheme. 

2.2. Linearly implicit Rosenbrock-type Runge–Kutta schemes 

The linearly implicit Rosenbrock-type Runge–Kutta schemes en- 

tail the solution of a sequence of linear systems. This class of 
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