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a b s t r a c t 

In order to efficiently simulate flows with complex geometries, an implicit immersed boundary-lattice 

Boltzmann flux solver (IB-LBFS) combined with an h-adaptive mesh refinement (AMR) technology is pro- 

posed and implemented on JASMIN infrastructure. In the present implementation, the original velocity- 

splitting IB-LBFS is modified by a momentum-splitting during the factional step. Four benchmark prob- 

lems are used to validate the present method, including the flow over a stationary circular cylinder, the 

sedimentation of a two-dimensional elliptical particle, the flow around a stationary sphere and the sed- 

imentation of a single sphere. The simulated results are in good agreements with previously published 

data, which demonstrates the accuracy and the capability of the proposed method in simulating flow 

problems with stationary or moving boundaries. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In computational fluid dynamics (CFD), there are many differ- 

ent types of numerical methodologies. As one of the various cat- 

egories, the immersed boundary method (IBM), first proposed by 

Peskin [1,2] , is now very popular in the CFD community, especially 

for simulating flows with complex geometries and moving bound- 

aries [3,4] . In IBM, Cartesian mesh, which is not required to con- 

form to the boundary geometry, is adopted for the solution of the 

flow field while discrete Lagrangian points are used for the im- 

plementation of non-slip boundary condition. With this numeri- 

cal configuration, which is in sharp contrast to those used in con- 

ventional numerical methods based on the body-conformal struc- 

tured or unstructured grids, IBM can avoid tedious grid generation 

process, especially for the three-dimensional (3D) problems with 

complex geometries, and the remeshing and projecting processes 

for the flows with moving boundaries. Thanks to these advantages, 

IBM has drawn considerable attentions in the CFD community in 

recent years, and many effort s have been devoted to develop effi- 

cient IBMs [5–11] . 

In the miscellaneous implementations of IBMs, either a contin- 

uum Navier-Stokes (NS) equation solver [2,12] or the kinetic lat- 

tice Boltzmann method (LBM) [13,14] can be employed as the basic 

flow solver to simulate the flow field. Many combinations of IBM 
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with LBM, i.e. IB-LBM, have been successfully proposed to simulate 

the flow problems [15–30] in the past dozen years due to the at- 

tractive features of LBM. As an alternative, IBM can also be imple- 

mented with the recently developed lattice-Boltzmann flux solver 

(LBFS) [10,11,31] , which is in fact a finite volume solver with both 

viscous and inviscid fluxes evaluated simultaneously by local re- 

constructions of LBM solutions at each surface. 

In most of the applications of IBM, a uniformed Cartesian grid 

will be used, and this will result in a sharp increase in the grid 

size. As estimated by Mittal and Iaccarino [4] , the grid-size ratio of 

a Cartesian grid to a body-conformal grid will increase with Re 1.5 

for a three-dimensional problem if the Reynolds number ( Re ) in- 

creases. In order to overcome this drawback, adaptive method was 

introduced to incorporate with IBM [26,30,32–36] . In this work, we 

are going to present an h-adaptive implicit immersed boundary- 

lattice Boltzmann flux solver based on JASMIN infrastructure [37] . 

JASMIN, which is the abbreviation of J parallel Adaptive Struc- 

tured Mesh applications INfrastructure, is a software infrastruc- 

ture developed by the Institute of Applied Physics and Computa- 

tional Mathematics (IAPCM) in 2004. Its main objective is to ac- 

celerate the development of parallel programs for large scale sim- 

ulations of complex applications on parallel computers. Based on 

this infrastructure, the IB-LBFS method is successfully integrated 

with an h-adaptive mesh refinement technique (AMR), and four 

different canonical flow problems, both two-dimensional (2D) and 

three-dimensional (3D), stationary as well as moving boundary 

problems, are used to validate the proposed AMR-IB-LBFS method. 

Furthermore, an alternative momentum-based splitting, which is 
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based on the conserved macroscale quantities as the AMR tech- 

nique does, is proposed during the factional step. Our simulation 

results have demonstrated the accuracy and capability of the AMR- 

IB-LBFS method in simulating 2D/3D flow problems with station- 

ary/moving boundaries. 

The rest part of this paper is organized as follows. Section 2 will 

be devoted to introduce the AMR-IB-LBFS method, including a brief 

review on IB-LBFS in Section 2.1 , an introduction on the structured 

adaptive mesh refinement (SAMR) technique in Section 2.2 and a 

summary on AMR-IB-LBFS in Section 2.3 . The numerical results 

and discussions will be presented in Section 3 . Four test cases 

will be simulated, including the flow around a stationary 2D cir- 

cular cylinder in Section 3.1 , the sedimentation of a 2D ellipti- 

cal particle in Section 3.2 , the flow around a stationary sphere in 

Section 3.3 and the sedimentation of a single sphere in Section 3.4 . 

Finally, the conclusions will be drawn in Section 4 . 

2. AMR-IB-LBFS 

2.1. Brief review on IB-LBFS 

In this section, a brief review on the IB-LBFS method will be 

presented. For an incompressible viscous flow, the governing equa- 

tions of mass and momentum conservation can be written as 

[31] 

∂ρ

∂t 
+ ∇ · (ρu ) = 0 (1) 

∂ρu 

∂t 
+ ∇ · (ρuu ) = −∇p + ∇ · [ μ(∇u + (∇u ) T )] + f (2) 

where ρ , u , p and μ are the fluid density, flow velocity, pressure 

and dynamic viscosity, respectively. f is the restoring force that is 

used to reproduce the effect of boundary, and it is determined by 

IBM. In this paper, we will review the two-dimensional situation, 

the three-dimensional IB-LBFS is similar and can be found in the 

paper by Wang et al. [11] . 

For a two-dimensional flow, a finite-volume method (FVM) 

together with a fractional step method are adopted to discrete 

Eqs. (1) and (2) , and they can be written as [10] 

1 

�t 

(
ρn +1 − ρn 

ρn +1 u 

∗ − ρn u 

n 

)
= −1 

h 

∑ 

k 

G k (3) 

ρn +1 u 

n +1 − ρn +1 u 

∗

�t 
= f (4) 

where �t and h are the time step and mesh size, while G k is 

combination of viscous and inviscid fluxes. In IB-LBFS, G k will be 

estimated based on the LBM. The readers can refer to references 

[10,31] for more details on the flux estimation. In this paper, we 

will give more description on the detailed implementation of IBM. 

Differently from the velocity-based splitting used in Eqs. (3) and 

(4) , here we are using the momentum-based splitting in the 

realization of the fractional step method. We denote w ≡ρu , 

Eqs. (1) and (2) can also be discretized as follows, 

1 

�t 

(
ρn +1 − ρn 

w 

∗ − w 

n 

)
= −1 

h 

∑ 

k 

G k (5) 

w 

n +1 − w 

∗

�t 
= f (6) 

From Eq. (5) , the conserved quantities ρn +1 and w 

∗ can be ob- 

tained, and the conserved quantity w 

n +1 can be acquired through 

Eq. (6) after the boundary condition enforced IBM [10] is imple- 

mented. Denoting δw = w 

n +1 − w 

∗, the fluid momentum can be 

corrected through 

w 

n +1 = w 

∗ + δw (7) 

and Eq. (6) can be rewritten as 

f = 

δw 

�t 
. (8) 

In order to satisfy the non-slip boundary condition, the fluid 

velocity on the boundary point must equal the boundary velocity 

U B at the same position. The fluid velocity on the boundary point 

can be obtained through interpolation of w 

n +1 and ρn +1 using the 

smooth delta function, and this relation can be written as ∑ 

i j w 

n +1 (x i j ) D (x i j − X 

l 
B ) ∑ 

i j ρ
n +1 (x i j ) D (x i j − X 

l 
B 
) 

= U 

l 
B (X 

l 
B ) , (9) 

where, l = 1 , · · · , N p is the index of the N p Lagrangian points, 

X 

l 
B 

= (X l 
B 
, Y l 

B 
) is the coordinate of the l th Lagrangian point, x i j = 

(x i j , y i j ) is the coordinate of the Eulerian point, and D (x i j − X 

l 
B 
) = 

δ( 
x i j −X l 

B 
h 

) δ( 
y i j −Y l 

B 
h 

) is the smooth delta function. δ( r ) is the one- 

dimensional delta function, and can be defined as 

δ( r ) = 

{ 

1 

4 

(
1 + cos 

(
π r 

2 

))
, 

0 , 

| r | ≤ 2 , 

| r | > 2 , 
(10) 

substituting Eq. (7) into Eq. (9) , ∑ 

i j 

δw(x i j ) D (x i j − X 

l 
B ) = U 

l 
B (X 

l 
B ) 

∑ 

i j 

ρn +1 (x i j ) D (x i j − X 

l 
B ) 

−
∑ 

i j 

w 

∗(x i j ) D (x i j − X 

l 
B ) (11) 

Note that δw can also be estimated through the boundary mo- 

mentum correction δw B , that is, δw(x i j ) = 

∑ 

l δw B (X 

l 
B 
) D (x i j − X 

l 
B 
) , 

Eq. (11) can be rewritten as follows 

a lk x k = b l . (12) 

Here x k = δw B (X 

k 
B 
) is the unknown quantity, while a lk = ∑ 

i j D (x i j − X 

l 
B 
) D (x i j − X 

k 
B 
) and b l = U 

l 
B 
(X 

l 
B 
) 
∑ 

i j ρ
n +1 (x i j ) D (x i j −

X 

l 
B 
) − ∑ 

i j w 

∗(x i j ) D (x i j − X 

l 
B 
) are known. It is easy to verify that 

the matrix coefficient a lk is a banded sparse symmetric matrix and 

strictly diagonal dominant. In the present work, the Jacobi itera- 

tion is applied to solve the system of equations. After the above 

system of equations are solved, the flow field can be updated 

accordingly. The forces and torques exerted on the body by the 

surrounding fluid can be estimated by using the expressions in 

reference [10] , where the internal mass effects of moving objects 

were included [38] . 

It should be emphasized that the present momentum-based 

splitting is different from the velocity-based splitting. In the 

velocity-based splitting, the fluid velocity is the main quantity all 

through the implementation of IBM. Only the interpolation of ve- 

locity is needed if one wants to get the flow field, but another in- 

terpolation of density should be performed if one also needs to 

accurately estimate the force exerted on the object. In the present 

method, we do not have to calculate the fluid velocity but use the 

interpolations of momentum and density to get the velocity on the 

Lagrangian points all through the implementation of IBM (In the 

implementation of LBFS, we can also use the momentum and den- 

sity without calculate the velocity). In general, the error ε between 

these two methods 

ε(X 

l 
B ) ≡

∑ 

i j w(x i j ) D (x i j − X 

l 
B ) ∑ 

i j ρ(x i j ) D (x i j − X 

l 
B 
) 

−
∑ 

i j 

D (x i j − X 

l 
B ) 

w(x i j ) 

ρ(x i j ) 
(13) 

is not zero, especially when the present smooth function D is used. 

However, the local density variations ρ ′ at Eulerian points around 
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