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a b s t r a c t 

The Volume of Fluid method is extensively used for the multiphase flows simulations in which the in- 

terface between two fluids is represented by a discrete and abruptly-varying volume fractions field. The 

Heaviside nature of the volume fractions field presents an immense challenge for the accurate compu- 

tation of the interface curvature and induces the spurious velocities in the flows with surface-tension 

effects. A 3D hybrid approach is presented combining the Convolution and Generalized Height Func- 

tion method for the curvature computation. The volumetric surface tension forces are computed using 

the balanced-force continuum surface force model. It provides a high degree of robustness at lower grid 

resolutions with first-order convergence and high accuracy at higher grid resolutions with second-order 

convergence. The present method is validated for several test cases including a stationary droplet, an os- 

cillating droplet and the buoyant rise of gas bubbles over a wide range of Eötvös ( Eo ) and Morton ( Mo ) 

numbers. Our computational results show an excellent agreement with analytical/experimental results 

with desired convergence behavior. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Multiphase flows involving fluid-fluid interfaces are ubiquitous 

in nature and technology. Rain drops, atomizing water jet, spray 

driers, emulsions, bubble swarms and trickle bed reactors are 

just a few examples. Typically these flows have high density 

and/or viscosity ratios with high surface tension effects which 

tend to produce topologically complex and dynamically evolving 

interfaces. So, the accurate numerical simulation of such flows has 

attracted a lot of attention among researchers. 

Numerical simulations of multiphase flows need to address 

two primary challenges: (i) mass-conserving advection of the fluid 

phases and (ii) accurate computation of the surface tension forces 

at the fluid-fluid interface. A wide range of multi-fluid interface 

tracking/capturing methods have been developed to simulate mul- 

tiphase flows and they mainly differ with respect to the way they 

tackle aforementioned challenges. A holistic overview of these 

methods is presented by Scardovelli and Zaleski [1] . Examples 

include the Volume of Fluid [2] , Level Set [3] , Front-Tracking [4] , 

multiphase Lattice-Boltzmann [5] and moving-grids [6] methods. 
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The Volume of Fluid (VOF) method uses a discrete and 

abruptly-varying volume fractions ( F ) field to represent the frac- 

tional amount of a reference fluid present in each computational 

cell. Advection of F is treated by a pseudo-Lagrangian geometrical 

advection schemes to minimize numerical diffusion. Interface 

reconstruction is required for geometrical advection of F which 

is done by piecewise linear interface calculation (PLIC) following 

Youngs [7] . Weymouth and Yue [8] shows that the VOF method 

can be ’exactly’ mass conservative however negligible mass er- 

rors may arise due to finite machine precision during numerical 

computations. 

The volumetric surface tension force is computed using the 

continuum surface force (CSF) model proposed by Brackbill et al. 

[9] . CSF model suggests that the accuracy of the surface ten- 

sion force is mostly determined by the computed local interface 

curvature. Accurate computation of the curvature is particularly 

difficult due to the discontinuous nature of F field. Inaccurate 

curvature, however, along with the improper discretization of the 

surface tension force creates an imbalance of pressure and surface 

tension forces at the interface which induces spurious velocities 

in the flow field. A detailed analysis of generation and scaling of 

spurious velocities in VOF simulations can be found in [10] . So, to 

reduce/eliminate these spurious velocities two problems need to 

be tackled distinctly: (i) surface tension and pressure forces need 

to be discretized at the same location (balanced-force concept by 
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Francois et al. [11] ) and (ii) accurate computation of the interface 

curvature. 

Interface curvature can be computed as a second order spatial 

derivative of the abruptly-varying F field. Different methods are 

available for the numerical computation of interface curvature 

and an excellent comparison is presented by Cummins et al. 

[12] and Francois et al. [11] . The Convolution (CV) method uses a 

smoothing kernel to convolute the F field before differentiating it. 

This removes the high frequency aliasing error which otherwise 

would occur due to the numerical differentiation of F (Heaviside 

function). Accuracy and convergence of the CV method depends 

upon the length of the smoothing kernel. The Height Function (HF) 

method computes the heights by summing the F field across the 

interface which produces differentiable heights from an abruptly- 

varying F field. A Standard Height Function (SHF) method uses 

a fixed 7 × 3 stencil in 2D (7 × 3 × 3 in 3D) for this summation 

process. A Generalized Height Function (GHF) method [13] uses 

an adaptive stencil to compute heights which produces a better 

curvature estimate especially in the case of complex topologies 

and interface merging/breakup. Reconstructed distance function 

(RDF) method computes a distance function from the interface in 

the VOF framework. This distance function is smoothly varying 

and hence curvature is directly computed from the numerical 

differentiation of the same. RDF method is similar to the one 

used for the coupled VOF-Level Set simulations by Sussman and 

Puckett [14] . A Least Squared (LS) method is another option which 

computes the curvature by fitting a parabola in 2D (paraboloid 

in 3D) either on the volume fractions directly [15] or on a set of 

interfacial points [13] . 

Only a few attempts have been made to develop hybrid meth- 

ods for curvature computation. Popinet [13] presents a hybrid 

method on adaptive grids which uses the GHF method at higher 

grid resolutions and the LS method at lower grid resolutions. The 

LS method is computationally expensive and requires a complex 

implementation compared to other methods. Owkes and Des- 

jardins [16] presents a mesh decoupled HF method where HF 

stencils are constructed in the direction of the interface normal 

which may not be aligned with the underlaying Eulerian grid. 

Embedded height-function technique by Ivey and Moin [17] con- 

structs HF stencils on unstructured non-convex polyhedral meshes. 

This method embeds traditional HF stencils in the unstructured 

mesh and geometrically interpolates the volume fraction informa- 

tion from the mesh to the HF stencil. Both of these methods uses 

fixed length HF stencils which drastically reduces the curvature 

accuracy during interface merging or breakup. 

Cummins et al. [12] concluded that the CV or RDF method ex- 

hibits a greater robustness over the HF method and doesn’t break- 

down catastrophically when the interfacial length scale (radius of 

curvature) is not adequately resolved by the grid. On the other 

hand, the HF method computes very accurate curvatures which 

converges with second-order when the interface is adequately 

resolved. So, the choice of appropriate curvature finding method 

depends on the number of grid cells across the radius of curvature. 

They called for a hybrid/unified curvature finding method which 

uses a robust CV or RDF method at lower and an accurate HF 

method at higher grid resolutions. Such a hybrid method should 

have a branching algorithm to decide which curvature finding 

method is to be used based on the local interface topology. 

In this paper, a 3D hybrid approach (CV-GHF) is presented 

which combines the CV and GHF methods for the curvature com- 

putation. The volumetric surface tension force is computed using 

the balanced-force CSF model. The present method computes 

highly accurate curvatures with second-order convergence at 

higher grid resolutions. A branching algorithm is an in-built part 

of the present method which automatically switches the curvature 

computation method from GHF to CV at lower grid resolutions. 

The method is quite robust and shows first-order convergence at 

lower grid resolutions. The paper is organized as follows: First, 

we describe the governing Navier-Stokes equations for multiphase 

flows along with the balanced-force CSF model in VOF framework. 

Subsequently, we discuss the CV, HF and hybrid CV-GHF method 

with the branching algorithm in detail. Next, we lay down differ- 

ent scenarios where the GHF method exhibits better performance 

than the SHF method. Curvature errors are then quantified for 

the present CV-GHF method to check the convergence behavior. 

Finally, an extensive validation of the method is reported with 

different test cases including a stationary droplet, an oscillating 

droplet and the buoyant rise of gas bubbles over a wide range of 

physical properties of the gas-liquid system. 

2. Numerical method 

In this section the governing equations for the multiphase flow 

are described along with the discretization and solution method- 

ology in brief. The main focus will be based on the balanced-force 

concept which is used to discretize the surface tension force in 

present work. 

2.1. Governing equations 

For the incompressible, unsteady, Newtonian multiphase flows 

the mass and momentum conservation (Navier-Stokes) equa- 

tions can be represented in terms of the single velocity field ( u ) 

formalism: 

∇ · u = 0 (1) 

ρ
∂u 

∂t 
+ ρ∇ · ( uu ) = −∇p + ∇ · τ + ρg + F σ (2) 

where τ = μ[ ∇u + (∇u ) T ] is the fluid stress tensor, g is the 

acceleration due to gravity and F σ is the local surface tension 

force accounting for the presence of curved deformable fluid-fluid 

interfaces. The local averaged density ( ρ) is evaluated by the linear 

averaging of the densities of the individual fluid phases: 

ρ = F ρ1 + (1 − F ) ρ2 (3) 

Note that we use volume fraction F = 1 and 0 for the compu- 

tational cells fully occupied by fluid 1 and fluid 2, respectively. 

0 < F < 1 indicates that the cell contains a fluid-fluid interface. The 

local averaged dynamic viscosity ( μ) is calculated by harmonic 

averaging [18] : 

ρ

μ
= F 

ρ1 

μ1 

+ (1 − F ) 
ρ2 

μ2 

(4) 

Advection of F depends on the local fluid velocity and is 

governed by the following conservation equation: 

DF 

Dt 
= 

∂F 

∂t 
+ u · ∇F = 0 (5) 

The volumetric surface tension force ( F σ ) is computed using 

the continuum surface force (CSF) model [9] : 

F σ = σκn (6) 

where σ is the coefficient of surface tension, κ is local interface 

curvature and n is the interface normal. F σ is non-zero only at 

the interface. n and κ are first and second order derivative of F 

respectively as follow: 

n = ∇F (7) 

κ = −∇ · ∇F 

|∇F | = −∇ · n 

| n | = 

1 

| n | 
[ 

n 

| n | · ∇| n | − (∇ · n ) 
] 

(8) 
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