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a b s t r a c t 

The shallow water equations are applicable to many common engineering problems involving modelling 

of waves dominated by motions in the horizontal directions (e.g. tsunami propagation, dam breaks). As 

such events pose substantial economic costs, as well as potential loss of life, accurate real-time sim- 

ulation and visualization methods are of great importance. For this purpose, we propose a new finite 

difference scheme for the 2D shallow water equations that is specifically formulated to take advantage 

of modern GPUs. The new scheme is based on the so-called Picard integral formulation of conservation 

laws combined with Weighted Essentially Non-Oscillatory reconstruction. The emphasis of the work is 

on third order in space and second order in time solutions (in both single and double precision). Further, 

the scheme is well-balanced for bathymetry functions that are not surface piercing and can handle wet- 

ting and drying in a GPU-friendly manner without resorting to long and specific case-by-case procedures. 

We also present a fast single kernel GPU implementation with a novel boundary condition application 

technique that allows for simultaneous real-time visualization and single precision simulations even on 

large ( > 20 0 0 × 20 0 0) grids on consumer-level hardware - the full kernel source codes are also provided 

online at https://github.com/pparna/swe _ pifweno3 . 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The shallow water equations (SWE) are a set of hyperbolic par- 

tial differential equations that arise from the more general invis- 

cid Navier–Stokes equations (also referred to as the Euler equa- 

tions) under the assumption that the vertical water depth h 0 is 

much smaller than the horizontal length scale L of the waves, i.e. 

h 0 � L , and hence the vertical acceleration is considered negligi- 

ble [1, p.89,91] . Such a simplification is especially beneficial from 

a computation point of view as the arising equations result in di- 

mensional reduction from R 

3 to R 

2 , while still describing the evo- 

lution of a three dimensional fluid surface. As a result, the equa- 

tions are often used for real-time flood prediction [2] , simula- 

tions of tsunami propagation and inundation [3] , modelling of dam 

breaks [4] and even computer graphics animations of water [5] . 

The shallow water equations in 2D conservation form are given 

as: 

∂U (x, y, t) 

∂t 
+ 

∂F (U (x, y, t)) 

∂x 
+ 

∂G(U (x, y, t)) 

∂y 
= S(b(x, y )) (1) 
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where U is the vector of conserved variables (mass and momen- 

tum), F and G the x and y directional fluxes, respectively; S is the 

source term due to topography underneath the water surface (also 

referred to as the bathymetry). In this work, we are interested 

in modelling the time-independent source term (i.e. only static 

bathymetry functions are considered). The vectors themselves are 

given as: 

U = 

⎛ ⎝ 

h 

hu 

h v 

⎞ ⎠ ; F = 

⎛ ⎜ ⎝ 

hu 

hu 2 + 

1 

2 
gh 2 

hu v 

⎞ ⎟ ⎠ 

; G = 

⎛ ⎜ ⎝ 

h v 
hu v 

h v 2 + 

1 

2 
gh 2 

⎞ ⎟ ⎠ 

; S = 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 

−gh 
∂b 

∂x 

−gh 
∂b 

∂y 

⎞ ⎟ ⎟ ⎟ ⎠ 

(2) 

where h is the water height, u and v are the horizontal veloc- 

ities, b is the underlying topography function and g the gravita- 

tional constant. It will also be useful to consider the total surface 

elevation η = b + h as illustrated in Fig. 1 . The conservation law 

form of the shallow water equations lends itself to many well- 

known numerical methods - the equations have been solved by 

several authors using classic finite difference schemes, such as the 

MacCormack method [3,6,7] , alongside specifically designed finite 

volume schemes such as the central-upwind scheme by Kurganov 

and Petrova [4,8,9] . These schemes generally have a fixed order of 
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Fig. 1. Spatial setup for the shallow water equations. 

accuracy - often the spatial order of accuracy is formulated to sec- 

ond order, with no straight-forward way of increasing it. Further- 

more, these schemes commonly use the method of lines (MOL) ap- 

proach 

1 with Runge–Kutta integration for timestepping, leading to 

multi-step implementations requiring complex flux evaluations at 

every stage. One of the most common arbitrary-order finite differ- 

ence methods is based on the Weighted Essentially Non-Oscillatory 

(WENO) reconstruction procedures [10] . Recently, the application 

of WENO to conservation laws was further modified to incorporate 

time-averaged flux functions by Seal et al. [11] (called the Picard 

Integral Formulation of WENO (PIFWENO) schemes), who also suc- 

cessfully applied the idea to the compressible Euler equations [12] . 

The compact nature of the PIFWENO formulation (specifically the 

Taylor timestepping variation) makes it a particularly interesting 

candidate for high-accuracy real-time simulations and as such the 

following paper provides a complete derivation and description of 

a PIFWENO-type scheme for the 2D shallow water equations that 

is third order accurate in space and second order accurate in time, 

well-balanced (the flux terms balance the source term [9] ) and is 

capable of retaining the positivity of the water depth, thus allow- 

ing for simulations with dry zones. Further, we present an opti- 

mized, single pass GPU implementation of the scheme capable of 

achieving real-time performance on various grid sizes using either 

single or double precision floating point arithmetic. 

The rest of the paper is organized as follows: in Section 2 a 

detailed mathematical description of the numerical scheme is pre- 

sented, followed by an overview of the practical implementation 

describing the employed optimization strategies in Section 3 . In 

Section 4 the numerical accuracy and the capability of the scheme 

to model complex flows with moving shorelines are investigated, 

alongside verification of the well-balanced property and grid con- 

vergence rates. Furthermore, the performance of the GPU imple- 

mentation for real-time computation and rendering is assessed us- 

ing both single and double precision arithmetic. Finally, increasing 

the scheme’s spatial and temporal orders are discussed, followed 

by conclusions of the undertaken research in Section 5 . 

2. Numerical method 

2.1. Picard integral formulation for SWE 

The Picard integral formulation (PIF) of the SWE can be defined 

by integrating Eq. (1) over the interval t ∈ [ t n , t n +1 ] [11] (subscripts 

denote derivatives while superscripts denote the time level): 

U 

n +1 = U 

n − �t ̃  F n x − �t ̃  G 

n 
y + �tS n (3) 

1 A partial differential equation is transformed into multiple ordinary differential 

equations via initial semi-discretization in space - this results in n ordinary differ- 

ential equations in time where n is the total number of grid cells. 

where ˜ F n and 

˜ G 

n are the time-averaged fluxes defined as: 

˜ F n = 

1 

�t 

∫ t n +1 

t n 
F n (U ) dt 

˜ G 

n = 

1 

�t 

∫ t n +1 

t n 
G 

n (U ) dt . 

(4) 

The conservative finite difference discretization of Eq. (3) can be 

written as: 

U 

n +1 
i, j 

= U 

n 
i, j −

�t 

�x 

(̂ F n i +1 / 2 , j − ̂ F n i −1 / 2 , j 

)
− �t 

�y 

(̂ G 

n 
i, j+1 / 2 − ̂ G 

n 
i, j−1 / 2 

)
+ �tS n i, j (5) 

where the values of ̂ F n and 

̂ G 

n at the cell edges are given by 

the WENO reconstruction procedure of the time-averaged fluxes ˜ F n 

and 

˜ G 

n , respectively. 

The time averaged fluxes can be approximated via Taylor ex- 

pansion of the fluxes centred at t = t n and then integrating the re- 

sult with respect to t [11] (henceforward, time level n dropped for 

convenience): 

˜ F = F (U ) + 

�t 

2 

dF (U ) 

dt 
+ O(�t 2 ) 

˜ G = G (U ) + 

�t 

2 

dG (U ) 

dt 
+ O(�t 2 ) . 

(6) 

Higher order approximations can be achieved by including more 

terms in the Taylor expansions. However, these require evaluations 

of Hessians and other higher order tensors which grow exponen- 

tially in size [11] - we found second order to be sufficient for our 

purposes. Note that the Hessian tensors of the flux functions for 

the SWE involve a scalar multiplier 1/ h which further complicates 

simulations involving dry zones ( h = 0 ). The temporal derivatives 

appearing in Eq. (6) can be expanded as: 

dF (U ) 

dt 
= 

∂F (U ) 

∂U 

∂U 

∂t 

dG(U ) 

dt 
= 

∂G(U ) 

∂U 

∂U 

∂t 

(7) 

where ∂ F / ∂ U and ∂ G / ∂ U are the flux Jacobians. For the SWE these 

are [13, p.429] : 

∂F 

∂U 

= 

( 

0 1 0 

−u 

2 + gh 2 u 0 

−u v v u 

) 

∂G 

∂U 

= 

( 

0 0 1 

−u v v u 

−v 2 + gh 0 2 v 

) 

. (8) 

Combining Eq. (7) with the Cauchy–Kowalewski procedure (us- 

ing the original PDE in Eq. (1) ) and plugging the results into 

Eq. (6) gives the final form of the time-averaged fluxes as: 

˜ F n = F (U ) + 

�t 

2 

∂F (U ) 

∂U 

( S − F (U ) x − G(U ) y ) 

˜ G 

n = G (U ) + 

�t 

2 

∂G (U ) 

∂U 

( S − F (U ) x − G(U ) y ) . (9) 

Any derivatives that appear in Eq. (9) are evaluated using simple 

central finite difference equations of order k − 1 where k is the or- 

der of the WENO reconstruction. Due to the extra �t term, this 

approximation is sufficiently accurate (for any higher order time- 

averaged flux approximations, every higher order term can be eval- 

uated with a consequently lower order approximation stencil, e.g. 

see [11] for an example of third order approximation). 

2.2. WENO reconstruction 

The core idea of the essentially non-oscillatory (ENO) recon- 

struction procedure [14] is to choose an approximation to the func- 

tion to be reconstructed such that it is as smooth as possible in 

the candidate stencil used for the approximation. Weighted ENO 
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