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a b s t r a c t 

This contribution presents a stability analysis for compressible boundary layer flows over indented sur- 

faces. Specifically, the effects of increasing depth D / δ∗ and Ma ∞ 

number on perturbation time-decay rates 

and spatial amplification factors are quantified and compared with those of an unindented configuration. 

The indented surfaces represent aeronautical lifting surfaces endowed with the smooth gap resulting 

when a filler material applied at the junction of leading-edge and wing-box components retracts upon its 

curing process. Since the configuration considered is such that the parallel/weakly-parallel assumptions 

are necessarily compromised, a global temporal stability analysis is considered in this study. Our analysis 

does not require a parallel flow constrain, and hence it is believed to be valid when two dimensional 

effects are relevant. 

We find that small surface modifications enhance certain flow instabilities. An increase in Ma ∞ 

en- 

hances further this behaviour: for the D/ δ∗ = 1 . 5 , Ma ∞ 

= 0 . 5 case, amplification factors at a given location 

can be up to 20 times larger than those corresponding to the unindented case. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The aeronautics industry has shown an increased interest on 

natural laminar flow ( NLF ) wings. These wings are carefully de- 

signed to maintain the flow under laminar conditions over a rel- 

atively large extent of the wing area. The advantage is a lower 

skin friction and the consequent reduction in fuel consumption; 

this is achieved at the price of more stringent manufacturing 

tolerances. 

From the manufacturing viewpoint, wings are assembled by 

joining several components, e.g. the main central wing box and the 

leading and trailing edges. The fitting between these elements is 

never perfectly tight: small grooves are always left at the wing- 

box/leading edge and trailing edge junctions. Filler materials, of 

resinous nature, are applied at these locations to alleviate the mis- 

fitting problem. However, since filler materials retract during its 

curing process, a small, possibly smooth indentation remains. The 

question arises then, whether this smaller but somewhat unavoid- 

able groove in the wing box/leading edge junction can enhance the 

growth of boundary layer instabilities. In such case, a significant 

forward movement of transition location would spoil the effort in- 

vested in the design of the natural laminar flow region. 
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It is well-known that in real swept wings, transition to turbu- 

lence is mainly driven by cross-flow and Tollmien–Schlichting in- 

stability mechanisms [1] . However, and contrarily to more estab- 

lished wing concepts, NLF wings operate at comparatively lower 

sweep angles [2] ; this in turn translates in an increased rele- 

vance of Tollmien–Schlichting over cross-flow dominated transition 

mechanisms. 

Spatial growth of Tollmien–Schlichting (or TS ) structures is one 

of the avenues explaining laminar to turbulent transition. Through 

this mechanism, i.e. the natural transition scenario, the TS waves 

grow exponentially over a finite length, to then saturate and in- 

teract in a non-linear fashion, leading eventually to transition to 

turbulence. Alternatively, non-linear interactions may appear with- 

out a definite preliminary exponential growth phase [3] (hence the 

term bypass transition). These alternative mechanisms are not cov- 

ered in this work. 

In the aircraft industry, it is common practice to employ semi- 

empirical, but extensively validated methods, to predict natural 

transition location for flows over wings and fuselages at flight con- 

ditions. The most common tools either perform a local stability 

analysis [1,4] or solve the Parabolised Stability Equations [or PSE , 

5 ] upon a base state obtained numerically; application of the e N 

criteria [6,7] allows then to predict approximate transition loca- 

tions for natural scenarios, as long as the parallel or weakly par- 

allel assumptions are fulfilled. 
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Whenever small surface imperfections are present, the prelim- 

inary exponential growth phase (natural transition) may be com- 

promised, resulting possibly into a different transition location. In 

this case, the parallel hypothesis is not valid anymore, and classical 

methods may have difficulties in predicting the modified transition 

location [2] . Alternative methods are needed to handle these situ- 

ations. 

Zahn and Rist report in [8] a detailed analysis of the effect of 

deep gaps in laminar-to-turbulent transition for a Ma ∞ 

= 0 . 6 flow, 

employing direct numerical simulation. They succeed in identifying 

an acoustic feedback mechanism between standing waves at the 

gap and the boundary layer, and derived a model that successfully 

accounts for amplification factor modifications. They also investi- 

gate the transition delay effect induced by a deep cavity placed 

before a forward-facing step. 

An alternative approach, based in the definition of a Local Scat- 

tering Problem, has been proposed recently in [9–11] . This method 

leads to an eigenvalue problem whose solution bridges the spatial 

behaviour much before and after the scatter location (indentation, 

bump, different materials junction, ...) 

In this context, we propose to quantify the effect of small in- 

dentations by using global stability analysis techniques [12] , since 

these do not rely on the parallel or weakly-parallel flow assump- 

tions. Indeed, many contributions describe the application of global 

techniques – both in its modal and non-modal variants – to study 

laminar separation bubbles on flat plate ( FP ) configurations, be 

they generated by a convex bump [13–15] , by a concave inden- 

tation [16] or by an adverse pressure gradient [17] . Alternatively, 

direct numerical simulation followed by solution of the linearised 

Navier–Stokes equations may be employed: e.g. [18] investigates 

the effect of very small-scale, localised bumps and indentations on 

the Tollmien–Schlichting waves appearing on a FP configuration. 

In this work, we aim at studying how the presence of an in- 

dentation modifies the stability characteristics of a canonical zero 

pressure gradient boundary layer (or BL ) over a flat plate. We 

specifically seek to quantify the effects of increasing indentation 

depth and flow compressibility (i.e. Mach number) on the linear 

stability (i.e. the spectrum and amplification factors) by means of 

global stability tools. In line with most of the studies mentioned 

above, the flow is considered bidimensional. 

The rest of the document is structured as follows: next section 

describes the flow configurations considered and presents the tool 

chain employed in our study. Section 3 gathers the results and dis- 

cussions. Finally, Section 4 summarises our conclusions. 

2. Flow configuration and numerical methods 

We study a zero pressure gradient boundary layer flow over a 

flat plate geometry that includes a smooth groove or indentation. 

The indentation, of infinite spanwise extent, sits at a certain dis- 

tance downstream of its leading edge (see Section 2.1 for the prob- 

lem description). We proceed – as in a classical stability analysis –

by obtaining first a steady (numerical) solution to the flow gov- 

erning equations: the base flow ( cf. Sections 2.2 and 2.3 ); a linear 

perturbation of this basic flow solution and its subsequent expan- 

sion in terms of Fourier modes allows then to assemble a discrete 

eigenvalue problem, (or EVP, cf. Section 2.4 ). The spectral informa- 

tion (eigenvalues and eigenfunctions) retrieved is analysed along 

two dimensions: on the one hand, the eigenvalue locations in the 

complex plane; on the other hand, the spatial evolution of individ- 

ual components along the streamwise direction, as given by their 

amplification factors ( Section 2.5 ). 

Table 1 

Configurations considered. 

Re δ∗ Ma ∞ L x / δ∗ L z / δ∗ x c / δ∗ L / δ∗ D / δ∗ L / D 

610 0.1 and 0.5 400 40 100 50 0, 1, 1.5 ∞ , 50, 33.3 

2.1. Problem description 

We consider compressible boundary layer flows with Re δ∗(x ) ∈ 

[ 610 , 1050 ] at upstream Mach numbers Ma ∞ 

= 0 . 1 and 0.5. The in- 

compressible boundary layer flow over a flat plate configuration is, 

in the range of Re δ∗(x ) considered, convectively unstable [4] , and 

has been addressed in [19,20] . 

The Reynolds number is based on a displacement thickness 

δ∗( x ): 

Re δ∗ = 

ρ∞ U ∞ δ∗(x ) 
μ∞ 

, (1) 

where ρ∞ 

, U ∞ 

and μ∞ 

are the density, speed and dynamic viscos- 

ity upstream. 

Fig. 1 shows the computational domain studied: it is rectangu- 

lar in shape, of length L x and height L z , and the air flows from 

left to right. The leading edge of the flat plate is not simulated, 

instead a solution to the compressible boundary layer equations 

at the corresponding Ma ∞ 

is imposed at the leftmost edge of the 

computational domain, i.e. the inlet. The choice of the domain ex- 

tent is partly guided by previous results on incompressible BL flows 

at the same Re δ∗ [19,20] . Specifically, L z / δ∗ needs to be chosen large 

enough so neither the BL growth nor the global eigenfunctions are 

artificially constrained, see [12] ; this consideration becomes more 

and more restrictive as both Ma ∞ 

and D / δ∗ increase. 

The isolated indentation, when present, is located at a distance 

x c from the left edge and is characterised by its breadth L and 

depth D . The notch considered presents a smooth, Gaussian-like 

profile given as z = −D exp 

(
x −x c 
L/ 2 

)2 
. 

All the geometrical parameters defining the problem are non- 

dimensionalised with the mass displacement thickness δ∗ at the 

leftmost edge of the domain. In this study we fix the groove ex- 

tent L / δ∗ and location x c / δ∗ and vary the groove depth D / δ∗ and 

the upstream Ma ∞ 

number [21] ; Table 1 summarises the different 

configurations considered. Notice that the range for the ratio L / D 

here included is essentially different from previous studies on rect- 

angular low aspect ratio cavities – L / D ∈ (1/5, 4) – at high Reynolds 

and Mach numbers described e.g. in [8,22,23] . 

2.2. Governing equations 

We are interested in flows governed by the compressible 

Navier–Stokes equations, that once expressed in terms of non- 

dimensional, conserved variables U = 

[
ρ, ρ�

 v t , ρE 
]t 

(mass, momen- 

tum and total energy per unit volume), can be written in compact 

vector form as: 

∂U 

∂t 
+ N ( U ) = 

�
 0 (2) 

where N is the divergence of the flux tensor: 

N = ∇ · ¯̄F ( U ) , (3) 

and 

¯̄F gathers convective and diffusive effects: 

¯̄F ( U ) = 

⎛ 

⎝ 

ρ�
 v 

ρ�
 v · � v t + p ̄̄I − ¯̄T 

ρH 

�
 v − ¯̄T · � v + 

�
 q 

⎞ 

⎠ . (4) 

In Eq. (2) above, p and ρH stand for thermodynamic pressure 

and total enthalpy per unit volume, respectively; ¯̄I is the identity 

matrix. 
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