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a b s t r a c t 

A third-order accurate reconstructed discontinuous Galerkin method, namely rDG(P 1 P 2 ), is presented 

to solve the Reynolds-Averaged Navier–Stokes (RANS) equations, along with the modified one-equation 

model of Spalart and Allmaras (SA) on 3D curved grids. In this method, a piecewise quadratic polynomial 

solution (P 2 ) is obtained using a least-squares method from the underlying piecewise linear DG(P 1 ) so- 

lution. The reconstructed quadratic polynomial solution is then used for computing the inviscid and the 

viscous fluxes. Furthermore, Hermite Weighted Essentially Non-Oscillatory (WENO) reconstruction is used 

to guarantee the stability of the developed rDG method. A number of benchmark test cases based on a set 

of uniformly refined quadratic curved meshes are presented to assess the performance of the resultant 

rDG(P 1 P 2 ) method for turbulent flow problems. The numerical results demonstrate that the rDG(P 1 P 2 ) 

method is able to obtain reliable and accurate solutions to 3D compressible turbulent flows at a cost 

slightly higher than its underlying second-order DG(P 1 ) method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The discontinuous Galerkin (DG) methods, originally introduced 

for solving the neutron transport by Reed and Hill [1] , have be- 

come popular for the solution of systems of conservation laws 

in recent decades. Nowadays, they are widely used in computa- 

tional fluid dynamics (CFD), computational acoustics, and compu- 

tational magneto-hydrodynamics (MHD) [2] . A lot of attractive fea- 

tures of DG methods have been listed in [3–7,11,22] . However, the 

DG methods also have a number of weaknesses that have yet to 

be addressed, e.g., how to reduce the high computational costs and 

how to develop more efficient time integration methods. 

In order to reduce the high costs associated to the DG methods, 

Dumbser et al. [8–10] introduced a new family of so-called recon- 

structed DG, termed P n P m 

schemes and referred to as rDG (P n P m 

) 

in this paper. P n indicates that a piecewise polynomial of degree 

of n is used to represent the underlying DG solution, and P m 

rep- 

resents a polynomial solution of degree of m ( m ≥ n ) that is recon- 

structed from the underlying P n polynomial and used to compute 

the fluxes. The P n P m 

schemes can be constructed based on a few 

different algorithms, e.g., the recovery approach [12] , the recon- 

struction approach [14,25] , and the Gauss–Green approach [16,17] , 
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all of which were proved to deliver the designed grid convergence 

of O(h m +1 ) [18] . Indeed, implicit methods can especially benefit 

from the use of rDG(P n P m 

) methods as the costs can be substan- 

tially reduced in two aspects [19,20] . Firstly, fewer spatial integra- 

tion points are required for evaluating the residual vector and Ja- 

cobian matrix. For instance, the third-order rDG (P 1 P 2 ) only needs 

4 points for triangular boundary integral whereas the equivalent 

DG (P 2 ) requires 7. Secondly, the Jacobian matrix of rDG (P n P m 

) is 

based on the underlying DG (P n ), and thus requires much less stor- 

age than the equivalent DG (P m 

). For example, for RANS-SA system, 

the memory needed for the diagonal part of the Jacobian matrix 

of rDG(P 1 P 2 ) is 576 word versus 3600 needed by DG (P 2 ) for 3D 

cases. 

In our latest work, a rDG(P 1 P 2 ) method based on a Hierarchical 

WENO reconstruction has been successfully used to solve the com- 

pressible flows on unstructured grids, ranging from inviscid [19–

22,43] to viscous flows [13,20,28,43,45] . This rDG(P 1 P 2 ) method is 

designed not only to reduce the high computing costs of the DGM, 

but also to avoid spurious oscillations in the vicinity of strong dis- 

continuities, thus effectively addressing the two shortcomings of 

the DGM. However, most practical applications belong to 3D tur- 

bulent flows. Therefore, the great success for rDG(P 1 P 2 ) has moti- 

vated us to extend this promising method to solution of the prac- 

tical 3D turbulent flows. 

In recent years, development and application of high-order 

methods for computing high Reynolds number turbulent flows 
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governed by the Reynolds-averaged Navier–Stokes (RANS) equa- 

tions have been an active research topic all over the world, as 

demonstrated by the two European projects: ADIGMA and IDIHOM 

[49,50] . It is well known that the use of high-order methods for 

computing RANS problems is not commonplace, mainly due to the 

severe numerical instability by the highly non-smooth behavior be- 

tween the turbulent and non-turbulent flow regions. Although it is 

still a challenging problem, there are several successful implemen- 

tations for the one-equation Spalart and Allmaras (SA) model and 

the two-equation k − ω model. In [33] by Bassi and Rebay, they 

successfully solved the RANS equations with a modified k − ω
model based on a high-order DG framework. In their work, the 

logarithm of ω rather than ω itself is used as the unknown, which 

has been found very useful to enhance stabilty of the method. Sim- 

ilarly, Hartmann et al. [34] developed a DG code for 3D turbu- 

lent flow computation with adaptive mesh refinement based on 

the k − ω model. In particular, some test cases with increasing 

complexity have been used to validate the solver. Burgess et al. 

[35] and Wang et al. [29] developed high-order DG methods for 

solving a fully coupled RANS-SA system respectively. The modified 

SA model is particularly designed to make the original SA model 

insensitive to negative values of turbulence working variables as 

numerical experiments show that turbulence working variable of- 

ten drops several orders of magnitudes at the edge of the turbu- 

lent boundary layer. Ceze and Fidkowski [36] applied a high-order 

output-based adaptive solution technique to the 2D RANS equa- 

tions closed with the modified negative SA model which origi- 

nally proposed by Allmaras et al. [37] . Compared with uniform 

refinement at second order, high-order yields faster convergence. 

Nguyen et al. [39] implemented the SA model equation based on a 

DG framework with an artificial viscosity modification for SA equa- 

tion. It is aimed to accomodate high-order RANS approximations 

on too coarse grids. Besides that, Crivellini et al. [38] analyzed and 

implemented a modified SA model based on high-order DG meth- 

ods for incompressible flows. For modified SA model, they intro- 

duce an SA model implementation that dealt with negative ˜ ν val- 

ues by modifying the source and diffusion terms in the SA model 

equation only when the working variable or one of the model clo- 

sure functions became negative. Zhou et al. [40] successfully solved 

RANS-SA system in a high-order correction procedure via recon- 

struction (CPR) framework. In their work, a high-order solver based 

on CPR has been developed for the Eikonal equation to compute 

the nearest distance to the wall. 

In addition, the use of high-order curved boundary elements is 

essential for high-order schemes to deliver an overall accurate so- 

lution [29] . Poor representation of the actual geometry could re- 

sult in a significant amount of artificial entropy produced along 

the geometry surface, thus degrading the solution accuracy. Fur- 

thermore, since the elements are of high-aspect-ratio through the 

thin boundary layer for high Reynolds number flow, the interior 

elements are also required to be curvilinear to avoid the negative 

cells. 

The objective of this paper is to develop a reconstructed dis- 

continuous Galerkin method for the solution of RANS-SA system 

on 3D curved grids. First, the quadratic curved elements gen- 

erated by Gmsh [30] or simple agglomeration are shown sat- 

isfatory for the solution of high order reconstructed discontin- 

uous Galerkin method. Second, grid convergence study on uni- 

formly refined meshes with high-order reconstructed discontinu- 

ous Galerkin is reported about the 3D turbulent benchmark test 

cases with increasing complexity from NASA official website [47] . 

This provides direct and valuable comparison with second-order 

finite volume method. Since a WENO reconstruction has to be 

used for unstructured meshes, e.g.prism and tetrahedron, to guar- 

antee the stability of rDG(P 1 P 2 ), it is necessary to demonstrate that 

WENO(P 1 P 2 ) could still guarantee the accuracy of the designed 

rDG(P 1 P 2 ) method. Thus, third, the accuracy of WENO(P 1 P 2 ) is also 

validated by comparison with the output of rDG(P 1 P 2 ) without 

WENO reconstruction on subsonic turbulent flow cases, i.e. Zero 

Pressure Gradient Flat Plate. 

The outline of the rest of this paper is organized as follows. 

The governing equations are described in Section 2 . The devel- 

oped reconstructed discontinuous Galerkin method is presented in 

Section 3 . The use of curved elements is introduced in Section 4 . 

Extensive numerical experiments are reported in Section 5 . Con- 

cluding remarks are given in Section 6 . 

2. Governing equations 

The conservation form of the compressible RANS equations 

with the modified one-equation Spalart–Allmaras (SA) turbulence 

model [44] is given as below, 

∂ U 

∂t 
+ 

∂ F j ( U ) 

∂ x j 
= 

∂ G j ( U ) 

∂ x j 
+ S (1) 

where the summation convention ( j = 1, 2, 3) has been used. In 

Eq. (1) , the conservative variables U are defined as 

U = (ρ, ρu j , ρe, ρ ˜ ν) T (2) 

where ρ , p and e denote the density, pressure and specific total en- 

ergy of the fluid, respectively, u j is the velocity components of the 

flow in the coordinate direction x j , and ˜ ν represents the turbulence 

working variable in the modified SA model. 

The invisid and viscous flux vector, i.e. F and G , are defined by 

F j = 

⎛ 

⎜ ⎝ 

ρu j 

ρu i u j + pδi j 

u j (ρe + p) 
ρu j ̃  ν

⎞ 

⎟ ⎠ 

, G k = 

⎛ 

⎜ ⎝ 

0 

τi j 

u i τi j + q j 
1 
σ μ(1 + ψ) ∂ ̃ ν

∂x j 

⎞ 

⎟ ⎠ 

(3) 

and the source term S is defined by 

S T = 

(
0 0 0 0 0 s 

)
(4) 

where s = c b1 ̃
 S μψ + 

c b2 
σ ρ∇ ̃  ν · ∇ ̃  ν − c w 1 ρ f w 

( νψ 

d 
) 2 − 1 

σ ν(1 + 

ψ) ∇ ρ · ∇ ̃  ν . 

The Newtonian fluid with the Stokes hypothesis is valid under 

the current framework, since only air is considered. The viscous 

stress tensor τ is defined by 

τi j = (μ + μt ) 

(
∂ u i 

∂ x j 
+ 

∂ u j 

∂ x i 
− 2 

3 

∂ u k 

∂ x k 
δi j 

)
(5) 

where δij is the Kronecker delta function, μ represents the molec- 

ular viscosity coefficient, which can be determined through Suther- 

land’s law, and μt denotes the turbulence eddy viscosity, which is 

given by: 

μt = 

{
ρ ˜ ν f v 1 i f ˜ ν ≥ 0 

0 i f ˜ ν < 0 

(6) 

The heat flux vector q j , which is formulated according to 

Fourier’s law, is given by 

q j = −c p 

(
μ

P r 
+ 

μt 

P r t 

)
∂T 

∂ x j 
(7) 

where c p is the specific heat capacity at constant pressure , Pr is 

the nondimensional laminar Prandtl number, Pr t is the turbulent 

Prandtl number, and the temperature of the fluid T is determined 

by T = 

p 
ρR . 
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