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a b s t r a c t 

The basic concept of multi-dimensional limiting process (MLP) on unstructured grids is inherited and 

modified in this work for improving shock stability and reducing numerical dissipation in smooth flows. 

A relaxed version of MLP condition, simply named as weak-MLP, is proposed for reducing dissipation. 

Moreover, a stricter condition, that is the strict-MLP condition, is proposed to enhance the numerical sta- 

bility. The maximum and minimum principles are satisfied by both the strict- and weak-MLP conditions. 

A differentiable pressure weight function is applied to combine two novel conditions, and thus the mod- 

ified limiter is named as MLP-pw (pressure-weighted) limiter. A series of numerical test cases show that 

MLP-pw limiter has improved stability and convergence, especially in hypersonic simulations. Moreover, 

the limiter also shows low numerical dissipation in simulating flow fields without shock-waves. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Unstructured grids are commonly used for the spatial dis- 

cretization of current industrial computational fluid dynamics 

codes that simulate aerodynamics or gas dynamics phenom- 

ena. The advantages of using unstructured grid include the con- 

veniences in automatic grid generation [1–3] , grid adaptation 

[4–6] and moving mesh techniques [7,8] , for complex geometries 

and flow phenomena. However, the accuracy and stability of un- 

structured schemes are usually challenged by the irregularity of 

grid connectivity and deterioration of grid quality [9,10] , which are 

inevitable in the automatic discretization for complicated geome- 

tries. Especially, simulating transonic and supersonic flows requires 

accurate approximation of nonlinear multi-dimensional physical 

phenomena, such as shock wave, shock waves interaction, and 

shock-vortex interaction, and thus excellent accuracy and stability 

are indispensable. 

As a key factor that affects spatial accuracy and stability, slope 

limiters, or for short, limiters, have been investigated for decades. 

As well known, second-order or higher than second-order schemes 

suffer from numerical oscillations across discontinuities, a typical 

one of which is shock wave [11,12] . Therefore, limiters are used 

to suppress these oscillations while keeping second-order recon- 

struction in the smooth region of flow field. On structured grids, 
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the finite difference method (FDM) and finite volume method 

(FVM) have been applied along with mature limiting method 

based on solid theories. The typical strategy is MUSCL (Mono- 

tonic Upstream-Centered Scheme for Conservation Laws) scheme 

[13] with limiters that subject to TVD (Total variation diminish- 

ing) condition [14–16] . However, these structured schemes can not 

be extended onto unstructured grids directly due to various rea- 

sons. Firstly, the schemes for structured grids are usually devel- 

oped based on one-dimensional analysis and extended to multi- 

dimensional structured grids by dimensional-splitting, which is in- 

feasible for unstructured grids. Secondly, one-dimensional princi- 

ples, for instance, the TVD condition, are not necessary feasible on 

multi-dimensional unstructured grids. An example of Jameson had 

shown that flow field on which the total variation is smaller could 

be more oscillatory than flow field on which the total variation 

is larger [17] . Furthermore, a scheme applying TVD condition will 

cause accuracy deterioration at extrema even in smooth regions, 

and thus the TVB [18] and ENO [19] schemes were developed. 

By extending Spekreijse’s monotone condition [20] , Barth and 

Jespersen designed a limiter on unstructured grids [21] , which 

modifies the piecewise linear distribution at each control volume. 

Barth-Jespersen limiter removes local extrema and insures stabil- 

ity. However, this limiter shows similar effects as that of TVD con- 

dition, which reduces accuracy at smooth extrema. Furthermore, 

the limiting function of Barth and Jespersen is non-differentiable, 

and thus the convergence is less satisfactory. Therefore, an im- 

provement was introduced by Venkatakrishnan [22] , who used 

a differentiable function similar to that of van Albada limiter 
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[23] which is designed for structured grids. Venkatakrishnan lim- 

iter archives better convergence compared with Barth-Jespersen 

limiter. Whereas, Venkatakrishnan limiter is not strictly monotone, 

and thus it might produce oscillations across shock wave. Gener- 

ally speaking, Barth-Jespersen limiter and Venkatakrishnan limiter 

have been successfully applied on unstructured grids since their 

inventions. 

Many researches have been focusing on the improvement of 

limiters. In order to reduce the dissipations of two aforementioned 

unstructured limiters, a strategy was introduced, which is turning 

off limiter in subsonic region. Nejat and Ollivier-Gooch introduced 

hyperbolic tangent function in their application of Venkatakrishnan 

limiter, by which the limiter only activates in limited region [24] . 

Michalak and Ollivier-Gooch further improved this method [25] . 

Thereafter, Kitamura and Shima introduced the concept of second 

limiter, which also uses a hyperbolic tangent function to turn off

limiter in stagnation or subsonic zone, but removes predefined pa- 

rameters [26] . It was proved by numerical results that second lim- 

iters can reduce dissipations effectively. 

A relatively new method on unstructured grids is MLP (Multi- 

dimensional Limiting Process) limiter, which was first introduced 

on structured grids [27,28] . By using the MLP condition which sat- 

isfies maximum/minimum principles, MLP limiter properly intro- 

duces multidimensional information. Therefore, the method has 

been showing better accuracy, robustness and convergence in 

various circumstances. Park, et al. designed unstructured MLP 

limter [29] . Thereby, Park and Kim [30] had constructed three- 

dimensional unstructured MLP limiter and proved that the lim- 

iter obeys LED (Local Extremum Diminishing) condition [17] . Ger- 

linger designed a low dissipation MLP limiter, MLP ld , on struc- 

tured grids, and simulated combustion problem [31] . Do, et al. de- 

fined a low dissipation MLP limiter for central-upwind schemes 

[32] . Kang, et al. [33] reduced dissipation by only turning on the 

MLP limiter in the vicinity of shock waves/nonlinear discontinu- 

ities. MLP limiter had also been developed for higher order un- 

structured numerical schemes, including Discontinuous Galerkin 

method [34] and Flux-Reconstruction or Correction Procedure via 

Reconstruction [35–37] . Li, et al. developed a multi-dimensional 

limiter, WBAP, which modifies the gradients by a component by 

component approach [38,39] . This method is not rotationally in- 

variant but shows good accuracy, robustness and convergence in 

numerical tests. 

In spite of the successful applications, there is still room for 

MLP limiter to improve the stability and convergence, especially for 

hypersonic flow simulations. Therefore, the presented research is 

focusing on this topic. This paper is organized as follows. The finite 

volume method and spatial reconstruction are briefly described in 

Section 2 . Then, the Barth-Jespersen limiter, Venkatakrishnan lim- 

iter and MLP limiter are briefly introduced in Section 3 , where the 

differences are emphasised. In Section 4 , the presented modifica- 

tions on MLP limiter are formulated. A series of numerical test 

cases along with corresponding discussions are given in Section 5 . 

Finally, Section 6 concludes the whole work. 

2. Finite volume method and second-order reconstruction 

The discretization for the compressible Navier–Stokes equations 

is introduced as follows. The integral form of the equations is ∫ 
�

∂Q 

∂t 
d� + 

∫ 
∂�

[ F c (Q ) − F v (Q )] · n d S = 0 , (1) 

where Q are the conservative variables in the flow field, F c ( Q ) is 

convective flux, and F v ( Q ) is viscous flux, which could be solved 

by using a central scheme for unstructured grids [40] . In this pa- 

per, solutions of the convective flux are emphatically investigated. 

Therefore, in the following discussions the F v ( Q ) term is neglected, 

and thus the equations are simplified as Euler equations. Q and 

F c ( Q ) are given as 

Q = 

⎡ 

⎢ ⎣ 

ρ
ρu 

ρv 
ρE 

⎤ 

⎥ ⎦ 

, F c (Q ) = 

⎡ 

⎢ ⎣ 

ρV n 

ρuV n + pn x 

ρv V n + pn y 

ρHV n 

⎤ 

⎥ ⎦ 

, (2) 

where V n = V · n = (un x + v n y ) . E is the total energy, H is the en- 

thalpy, given as 

E = 

1 

γ − 1 

p 

ρ
+ 

1 

2 

(u 

2 + v 2 ) , (3) 

H = E + 

p 

ρ
, (4) 

where γ is the ratio of specific heat. For air at moderate pressures 

and temperatures one may use γ = 1 . 4 . 

The governing equations are discretized by using cell-centered 

finite volume formulation which is applied to a polygon computa- 

tional cell i sharing a interface k with a neighbouring cell j . There- 

fore, the spatial discretization at cell i for the Euler equations can 

be expressed as 

∂ 

∂t 
(Q �) i = −

( 

N f ∑ 

k =1 

F c,k · n k S k 

) 

i 

, (5) 

where S k = | ∂�k | is the interface area, n k is the unit norm vec- 

tor outward from the interface, N f is the interface number of cell 

i . Although the exact convective flux function F c,k is nonlinear, it 

is usually solved by a linearized numerical flux instead of the ex- 

act formula [41] . Furthermore, the numerical flux function could 

be simplified as an one-dimensional scheme that calculates in the 

direction of vector n k . In fact, upwind schemes, such as FDS (Flux 

Difference Splitting) scheme or FVS (Flux Vector Splitting) scheme, 

are mostly designed based on one-dimensional hypothesis. FDS 

schemes or FVS schemes could be defined as a function of con- 

servative variables Q , and thus the flux is given as 

F c,k = F FDS/FVS (Q 

+ 
k 
, Q 

−
k 
, n k ) , (6) 

where the superscript ( · ) ± denote the left and right values of in- 

terface k respectively. In the following paragraphs, the subscripts c 

and k are neglected for simplicity. 

The cell interface values are extrapolated from the cell centre 

values by using gradient ∇q : 

q + 
k 

= q i + φi ∇q i · �r ik , 

q −
k 

= q j + φ j ∇q j · �r jk , 
(7) 

where �(·) ik = (·) k − (·) i and q could be any of the conservative 

variables. ∇q is calculated by nodal averaging procedure [42] and 

Gauss-Green scheme [21] , and the slope limiter value φ is em- 

ployed to suppress oscillations at captured discontinuities. In the 

following sections, the calculation of φ will be investigated. Recon- 

struction becomes conservative if the integration of q over a cell 

equals to the cell-averaged value, i.e. 

q = 

1 

| �| 
∫ 
�

q d�. (8) 

The time derivative in Eq. (5) could be solved by explicit and 

implicit schemes. Due to the limited topic of the presented article, 

temporal solutions will not be further discussed. 

3. Limiters 

In order to give the background information of designing the 

improved limiter, the success classical limiters are briefly intro- 

duced in this section, with emphasising important features. For the 

detailed information readers may examine the original articles in- 

troducing the limiters. 
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