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a b s t r a c t 

An efficient Bayesian uncertainty quantification approach is proposed, which combines the adaptive high 

dimensional model representation technique (HDMR) and stochastic collocation (SC) method based gen- 

eralized polynomial chaos (gPC) to construct the surrogate for sampling procedure in Bayesian calibration 

step. Specifically, the adaptive HDMR technique is used to decompose the original high dimensional prob- 

lems into several lower-dimensional subproblems, which are subsequently solved with the gPC-based SC 

method. Then the Bayesian calibration and prediction are carried out with the so-constructed surrogate 

model. A new indicator based on the variance of the corresponding component function is employed to 

identify the important components of the HDMR, instead of the original one based on the impact on the 

output mean, as the input parameters that can be well informed in the inverse problem are the ones that 

the model output is sensitive to. Further, a rigorous convergence study of the approximate posterior to 

the true posterior is carried out for the proposed approach. Its applications to both a simple mathematical 

function and a complex fluid dynamic model, i.e. k - ω- γ transition model, are investigated, demonstrating 

both its efficiency and accuracy. In the application to k - ω- γ transition model, the results show not only 

a quantified uncertainty overlapping well with the experimental data, but also a great improvement of 

the match between the prediction mean and the experimental data, which may be due to the further 

account of the intermittency through the spread of the model parameters. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Hypersonic boundary layer transition is not only of fundamen- 

tal interest in fluid dynamics, it is also of great practical relevance 

in the design of many aerodynamic configurations at hypersonic 

speeds. Despite the rapid development of Direct numerical sim- 

ulation (DNS) technique, Reynolds-averaged-Navier-Stokes (RANS) 

model and empirical e N method are still the main tools for transi- 

tion predictions in engineering applications, due to its affordabil- 

ity compared to DNS. A local-variable-based RANS model, namely 

k - ω- γ model, has been proposed recently, which can successfully 

simulate three-dimensional (3-D) high-speed aerodynamic flow 

transition with a reasonably wide range of Mach numbers [1,2] . 

However, flow transition to turbulence is a very complex process, 

involving receptivity process, linear modal growth, mode interac- 

tion, final breakdown to turbulence etc. [3] , which cannot be cor- 

rectly simulated by RANS model. Transition prediction with RANS 

model is highly unreliable and the aim of this work is to quantify 
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the uncertainty of the quantity of interest (QoI) in the hypersonic 

boundary layer transition simulations with k - ω- γ model. 

In the pioneering work of Kennedy and O’Hagan [4] , the 

Bayesian calibration technique for a general computer model is 

presented and the uncertainties are classified into parameter un- 

certainty, model inadequacy, residual variability, parametric uncer- 

tainty, observation error and code uncertainty. The uncertainty of 

RANS predictions mainly comes from the first two sources, param- 

eter uncertainty and model inadequacy. The former represents the 

uncertainty due to the lack of knowledge of the model parame- 

ters and the latter represents the discrepancy between true phys- 

ical observation and model output at optimal model parameters. 

A number of studies have focused on the parameter uncertainty. 

Cheung et al. [5] have applied Bayesian uncertainty analysis to 

Spalart-Allmaras (SA) turbulence model for wall-bounded incom- 

pressible turbulent flow at variable pressure gradients. They em- 

ployed three different stochastic models for inadequacy terms and 

compared them in terms of model plausibility and prediction of 

QoIs. Oliver and Moser [6] extended the work of Cheung et al. by 

considering four stochastic extensions of four eddy viscosity turbu- 

lence models. They proposed a more complex stochastic model to 

take account of the multi-scale structure of the boundary layer. In 
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Ref. [7] , Edeling et al. estimated the parameter variability within 

and across the scenarios (i.e. at different pressure gradients) under 

the Bayesian framework. Further, they [8] utilized Bayesian Model- 

Scenario Averaging approach to synthesize the results of 5 tur- 

bulence models at 14 scenarios, resulting a substantial improve- 

ment in both prediction mean and variance. Bayesian parameter 

estimation was also used for other flow configurations, e.g. Jet-in- 

Crossflow [9] etc. Besides, parameter uncertainty of RANS models 

has also been assessed in Ref. [10] , with the input uncertainty im- 

posed through a prior distribution, based on an extensive literature 

survey about the parameter dispersion. 

Besides parameter uncertainty mentioned above, model- 

inadequacy is also a major source of uncertainty in RANS predic- 

tion and quantifying and reducing this uncertainty have raised the 

research interests recently in the field. Dow and Wang [11] em- 

ployed the Bayesian approach to infer the turbulent viscosity from 

DNS data. In Ref. [12] , Emory et al. proposed an approach to 

quantify the uncertainty directly through Reynolds stress. In Ref 

[13] , Gorle and Iaccarino carried out uncertainty quantification of 

turbulent scalar flux models, taking account of the uncertainty 

directly through Reynolds stress. In Ref. [14] , Duraisamy et al. 

proposed a data-driven approach for turbulence and transition 

modeling, which consists mainly of injecting the functional form 

of deficiencies inferred by experimental data into simulations to 

obtain more accurate predictions. A data-driven, physics-informed 

Bayesian approach has been proposed recently by Xiao et al. [15] , 

taking account of the model-form uncertainty directly through 

Reynolds stress and an iterative ensemble Kalman method was 

used to incorporate the prior knowledge and the experimental 

data. 

The RANS turbulence models have been the main focus of the 

previously mentioned work. The research of uncertainty quantifi- 

cation for RANS transition modeling is rather limited. An excep- 

tion is the work of Pecnik et al. [16] , in which they applied UQ 

for laminar-turbulent transition in turbo-machinery configurations, 

using the γ − ˜ Re θt model of Menter et al. [17] , but only a forward 

uncertainty propagation is carried out and the input uncertainty is 

imposed through a prior distribution. Bayesian uncertainty analy- 

sis provides a rigorous approach to quantify the uncertainty aris- 

ing from the mathematical modeling and simulation, and to incor- 

porate the prior knowledge and experimental data systematically, 

through Bayesian data updating. Thus in this work, we apply the 

Bayesian framework to quantify the uncertainty arising from the 

k - ω- γ transition model in hypersonic transition simulations. We 

focus on the parameter uncertainty and the model inadequacy is 

simply termed as a multiplicative Gaussian random variable, as in 

the work [5] . Modeling the inadequacy terms requires more phys- 

ical insight of transition process and is a RANS modeling issue 

rather than a UQ of an existed model. In this work we restrict our- 

selves to the latter issue and treat k - ω- γ model as a black box. 

A key step in this framework is the Bayesian calibration. After 

identifying the prior distribution of the input parameters and con- 

structing the stochastic model, the posterior distributions of the 

model parameters are obtained through Bayes’ rule. This procedure 

usually requires a sampling method, e.g. Markov chain Monte-Carlo 

(MCMC) [18] . A large number of model evaluations, typically tens 

of thousands, are required in the sampling procedure, which are 

computationally expensive. A number of methods exist in the lit- 

erature to reduce the computational cost while retaining the non- 

intrusiveness of the corresponding approach, e.g. [19,20] . In Ref. 

[21] , Ma and Zabaras proposed an adaptive version of high dimen- 

sional model representation technique (HDMR) to decompose the 

original high dimension problem into lower dimension subprob- 

lems and solved them with the adaptive sparse grid collocation 

(ASGC) method [22] they proposed previously. The efficiency of 

this approach is demonstrated with some mathematical functions 

and also with a set of fluid-mechanic problems. In Ref. [23] Edel- 

ing et al. improved the original Simplex-stochastic collocation (SSC) 

[20] method and also combined it with the adaptive HDMR tech- 

nique, resulting in an improved scalability. They applied this ap- 

proach in a nozzle and an airfoil flow. These approaches have 

only been applied in the forward problem and their application 

to inverse problems hasn’t been explored yet. Marzouk and Xiu 

[24] proposed a stochastic collocation approach to Bayesian infer- 

ence in inverse problems and conducted a rigorous error analysis 

for the approximate posterior. Several examples were carried out 

to demonstrate the efficiency of the proposed method, including a 

Burgers’ equation case and a genetic toggle switch case in biology. 

In this paper we combine the adaptive high-dimensional 

stochastic model representation (HDMR) technique [21] with the 

stochastic collocation (SC) approach based on generalized polyno- 

mial chaos (gPC) [24] , to construct the surrogate model. Then this 

surrogate model is used for Bayesian inference in the inverse prob- 

lem. This idea is inspired by the work of Ma and Zabaras [21] , 

in which they combined the HDMR technique with the adaptive 

sparse grid collocation (ASGC) [22] method to solve the forward 

problem. The proposed approach can be seen as an extension of 

the stochastic collocation approach proposed by Marzouk and Xiu 

[24] , by integrating it into the high dimensional model representa- 

tion framework. 

The paper is organized as follows: the Bayesian uncertainty 

quantification framework is described in Section 2 . In Section 3 the 

surrogate model construction approach is described, including the 

gPC-based stochastic collocation method and the HDMR technique. 

The algorithm is summarized in Section 4 . In Section 5 we demon- 

strate the accuracy and efficiency of the proposed method through 

a simple mathematical function. A comparison between the pro- 

posed method and the exact model is given. After testing our ap- 

proach with this simple mathematical function, we apply the ap- 

proach to k - ω- γ transition modeling in hypersonic transition sim- 

ulations in Section 6 . The results are given in Section 6.4 , includ- 

ing both the posterior distribution of the input parameters and the 

prediction mean with quantified uncertainty. Finally the conclusion 

is drawn in Section 7 . 

2. Bayesian uncertainty quantification framework 

2.1. General review 

This part provides a brief description of the UQ framework, 

following the work of [5,7] . The main steps are the specification 

of the flow class and quantity of interest (QoI), the collection of 

experimental data, the construction of the stochastic model, the 

Bayesian calibration, and validation and prediction. As is pointed 

out in Ref. [5] , whether a model is considered valid or not depends 

on its ability to predict the QoIs to the required accuracy and pre- 

cision, rather than to predict all aspects of the physical world. Thus 

the identification of the QoIs is a key issue and should be kept in 

mind during the whole uncertainty quantification process. In this 

work, we assume the QoIs are observable for the corresponding 

experiments and thus we use the observation of QoIs as the data 

to inform the model parameters. 

In Bayesian framework, various forms of uncertainty, whether 

aleatoric or epistemic, are all represented through probability. Thus 

we can characterize the input parameter uncertainty by their prob- 

ability density function (PDF). In the Bayesian calibration step, 

the posterior distributions of the parameters are obtained through 

Bayes’ rule: 

p( z | d ) = 

p( d | z ) p( z ) 

p( d ) 
(1) 



Download English Version:

https://daneshyari.com/en/article/7156531

Download Persian Version:

https://daneshyari.com/article/7156531

Daneshyari.com

https://daneshyari.com/en/article/7156531
https://daneshyari.com/article/7156531
https://daneshyari.com

