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a b s t r a c t 

We investigate the potential of the so-called “relocation” mesh adaptation in terms of resolution and ef- 

ficiency for the simulation of free surface flows in the near shore region. Our work is developed in three 

main steps. First, we consider several Arbitrary Lagrangian Eulerian (ALE) formulations of the shallow 

water equations on moving grids, and provide discrete analogue in the Finite Volume and Residual Dis- 

tribution framework. The compliance to all the physical constraints, often in competition, is taken into 

account. We consider different formulations allowing to combine volume conservation (DGCL) and equi- 

librium (Well-Balancedness), and we clarify the relations between the so-called pre-balanced form of 

the equations [7]), and the classical upwinding of the bathymetry term gradients [1]. Moreover, we pro- 

pose a simple remap of the bathymetry based on high accurate quadrature on the moving mesh which, 

while preserving an accurate representation of the initial data, also allows to retain mass conservation 

within an arbitrary accuracy. Second, the coupling of the resulting schemes with a mesh partial differen- 

tial equation is studied. Since the flow solver is based on genuinely explicit time stepping, we investigate 

the efficiency of three coupling strategies in terms of cost overhead w.r.t. the flow solver. We analyze the 

role of the solution remap necessary to evaluate the error monitor controlling the adaptation, and pro- 

pose simplified formulations allowing a reduction in computational cost. The resulting ALE algorithm is 

compared with the rezoning Eulerian approach with interpolation proposed e.g. in Tang and Tang [17]. An 

alternative cost effective Eulerian approach, still allowing a full decoupling between adaptation and flow 

evolution steps is also proposed. Finally, a thorough numerical evaluation of the methods discussed is 

performed. Numerical results on propagation, and inundation problems shows that the best compromise 

between accuracy and CPU time is provided by a full ALE formulation. If a loose coupling with the mesh 

adaptation is sought, then the cheaper Eulerian approach proposed is shown to provide results quite close 

to the ALE. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

We investigate the potential benefits of r- adaptation techniques 

(or relocation adaptation) in the computation of propagation and 

interaction of free surface waves, including their runup on com- 

plex bathymetries. The main building blocks of our study are the 

following. First, we use the well known Shallow Water equations to 

model the hydrostatic free surface hydrodynamics in vicinity of the 

shore. The use of moving meshes will lead us to investigate various 

forms of the model equations in an Arbitrary-Lagrangian-Eulerian 

(ALE) setting. Second, the equations are coupled with a Laplacian- 

based adaptive mesh deformation technique. The coupling between 
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flow evolution and mesh Partial Differential Equation (PDE) is dis- 

cussed. Third, a thorough quantitative evaluation of the resulting 

algorithms on benchmarks involving wave propagation and inun- 

dation of complex bathymetries is performed. 

The numerical approximation of Shallow Water flows is still a 

subject of intense research. For our purposes, the most interest- 

ing issue is the need of preserving, possibly to machine accuracy, 

the so-called lake at rest steady state. This property is known as 

C-property or well balacedness (WB). The initial work of [1] on 

the construction of well-balanced Finite-Volume approximations in 

one dimension, has been led throughout the years to many dif- 

ferent results allowing the construction of unstructured mesh dis- 

cretizations verifying the C-property via an appropriate coupling 

of the numerical flux and numerical source terms [2,3] , or based 

on different forms of the equations, as the well-balanced form of 

[4–6] , or the so-called pre-balanced form of Rogers et al. [7–9] . 
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These ideas have been also incorporated in Finite Element, Resid- 

ual Distribution, and Discontinuous Galerkin methods (see e.g. [10–

14] and references therein). 

To enhance the resolution of complex wave patterns, and of 

the wetting/drying dynamics we study the use of mesh adaptation 

techniques based on nodes redistribution (or relocation). These are 

known as r- adaptation techniques. The reason for this choice is, 

on one hand the overhead represented by remeshing techniques 

[15,16] w.r.t. a single time step of a fully explicit discretization of 

the shallow water model, on the other the potential shown in the 

past for these techniques in e.g. [17] , and in the numerous works 

of Budd and collaborators (see e.g. the review [18] and references 

therein). Nodal movement is obtained by solving an appropriate 

Moving Mesh Partial Differential Equation (MMPDE). Originally in 

[19] an equation for one dimensional grid movement was obtained 

from an integral statement of the equidistribution principle of De 

Boor [20] . Given the reference/computational coordinates X and 

the actual/physical one x , the central idea is to find a transforma- 

tion x = M( X , t) that equidistributes some measure of the solution 

error (monitor function) on the reference domain. During the last 

decades theoretical arguments and experience lead to the design 

of quite general monitor functions which can ensure the adapta- 

tion to particular features of the solution; the arclenght-type mon- 

itor function of Winslow [21] , based on solution gradients, is one 

of the most successful. Two dimensional MMPDE were later intro- 

duced in [22] based on a variational formulation of the equidis- 

tribution principle and on an analogy with the harmonic map of 

Dvinsky [23] . More recently, the use of Monge-Ampere equation 

for mesh movement have also attracted considerable interest, see 

[24] . In the present work we have used the two dimensional MM- 

PDE of Ceniceros and Hou [25] which, while simple, prove to be 

computationally efficient and capable to follow complex flow evo- 

lutions up to small scale phenomena. This approach has been quite 

successful, and it has been used among the others, in [17,26,27] . 

The coupling of the flow solver with the mesh at each time 

step is non-trivial, as the mesh equations depend on the solu- 

tion on the (unknown) adapted mesh. In particular the Shallow 

Water equations and the MMPDE can be either solved simultane- 

ously or alternately . The latter has been successfully implemented 

by [22,28] , showing a significant reduction of stiffness problems 

even if it can lead to a lag in the mesh movement with respect 

to the physical features. Depending on the framework in which we 

evolve the PDEs, two different alternate algorithms are tested at 

this point. If the PDEs are written in Eulerian framework one gets 

the rezoning method suggested in [17] . This approach, based on a 

sequence of mesh and flow iterations, uses the mesh solver as a 

black box, the flow equations being solved on a (different) fixed 

mesh at each time iteration. Its drawback is that, at each time iter- 

ation, mesh change is treated using a remap/interpolation of the 

flow variables from the old mesh to the new one. This may be 

quite expensive as it needs to guarantee the same properties as 

the flow solver itself (high order accuracy, non-oscillatory charac- 

ter/positivity preservation, C-property, mass conservation). At the 

opposite, once the grid has been adapted, one can evolve the flow 

in a reference framework which follows the transformation of the 

mesh using an Arbitrary-Lagrangian-Eulerian formulation of the 

flow equations. In this case, the mesh movement effects are in- 

corporated in the discretization of the physical PDEs and the prop- 

erties of the solution are only determined by the scheme. 

However, a proper ALE form of the numerical discretization 

has to be used. In particular, a well known requirement for ALE 

discretizations is the compatibility with a Geometric Conservation 

Law (GCL), which guarantees that no artificial volume ( viz mass) is 

produced in the computational domain due to mesh motion. The 

discrete counterpart of this property is known as the DGCL. (cf. the 

pioneering work [29,30] and the more recent [31] for an overview). 

For aeroelastic and aerodynamics simulations the ALE approach is 

very common for its simplicity to deal with the problem of mov- 

ing boundaries, see [32] . In the moving mesh community, a non 

conservative form of the ALE coupling was extensively studied in 

[22] and [28] and it is referred to as the quasi-Lagrange approach. 

However, approximations of such a non conservative form of the 

ALE equations “hide” the DGCL and this in turns makes difficult to 

conserve the total domain volume along the simulation. More re- 

cently an r -adaptive ALE approach in conservation form, similar to 

the one used in this work, was employed in [33,34] . 

Ideally, in Shallow Water flows, we have to ensure the satisfac- 

tion of both a discrete analog of the GCL, and of the C-property, 

while still being able to conserve mass and momentum. A solution 

based on an ALE remap of the bathymetry has been suggested in 

[27] . However, unless such remap is very high order accurate, this 

quickly leads to a smoothing of the data, hence a re-initialization 

of the topography is required, spoiling mass conservation. 

In this paper, we propose and evaluate simplified strategies 

allowing adaptive simulations of Shallow Water flows with wet- 

ting/drying fronts. In order to do this, we systematically review 

the forms of the equations which are best suited for the task 

of combining well-balancedness and DGCL on moving meshes; 

we use the resulting model equations to provide well-balanced 

high-order Finite Volume (FV) and Residual Distribution (RD) dis- 

cretizations, clarifying the relations between the pre-balanced and 

well-balanced approaches; we provide a simple recipe to marry 

mass conservation and C-property on moving meshes using a re- 

interpolation of the nodal bathymetry based on accurate quadra- 

ture of the given bathymetric data; we define improved ad-hoc 

error estimators allowing to better track both smooth waves, and 

shorelines; finally, coupling strategies allowing cheaper and sim- 

pler interpolation algorithms in the adaptation phase, while re- 

taining all the desired discrete properties, are evaluated in terms 

of CPU time for a given resolution, using standard benchmarks for 

near shore hydrodynamics. 

The paper is organized as follows: Section 2 presents the gen- 

eral setting, and in particular it recalls the main forms and prop- 

erties of the Shallow Water equations, and of a simpler scalar 

model used to simplify part of the discussion. The well-balanced 

numerical approximation of the PDEs in ALE form with Finite Vol- 

ume and Residual distribution schemes is discussed in Section 3 , 

with a discussion of the appropriate ALE form for balance laws. 

The moving mesh algorithm is presented in Section 4 , with some 

details concerning the management of wet-dry areas in shallow 

water simulations. In Section 4.2 the interpolation strategy of 

[35] is presented as a conservative ALE remap. Three strategies 

to couple mesh movement and balance laws solution are pre- 

sented in section Section 5 : the rezoning algorithm of Tang cou- 

pled with the SW equations, see Zhou [35] (EUL1), an improved 

version of the above algorithm (EUL2) and the ALE coupling. Fi- 

nally, Section 7 and 8 presents a thorough study of the coupled al- 

gorithms in terms of accuracy, and CPU time for both simple aca- 

demic problems and for some classical benchmarks involving the 

long wave runup on complex bathymetries. The paper is ended by 

a summary of the main results, and by an overlook at future de- 

velopments. 

2. Problem setting and model equations 

2.1. Shallow Water equations and lake at rest 

Our final objective is the simulation of the propagation and 

runup of free surface waves in the near shore region. A good model 

for the physics of these waves is given by the nonlinear Shallow 

Water equations, providing a depth averaged description of the 
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