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a b s t r a c t 

In this work, an implicit simplified sphere function-based gas kinetic scheme (SGKS) is presented for 

simulation of 3D incompressible isothermal flows. At first, the numerical fluxes of governing equations 

are reconstructed by the local solution of Boltzmann equation with sphere function distribution. Due 

to incompressible limit, the sphere at cell interface can be approximately considered to be symmetric 

as shown in the work. Besides that, the energy equation is usually not needed for simulation of in- 

compressible isothermal flows. With all these simplifications, the formulations of the simplified SGKS 

can be expressed concisely and explicitly. Secondly, the commonly-used implicit Lower-Upper Symmetric 

Gauss-Seidel (LU-SGS) method is adopted to further improve the computational efficiency and numerical 

stability of present scheme. In LU-SGS method, only a forward and a backward sweep are needed for 

marching the conservative variables in time. As a result, the simplified SGKS with the LU-SGS method 

can be implemented easily. Numerical experiments, including the 3D lid-driven cavity flow and flow over 

a backward-facing step, showed that the incompressible isothermal flows can be well simulated by the 

developed scheme and its computational efficiency is significantly higher than that of the original SGKS 

and the lattice Boltzmann flux solver (LBFS). In addition, it was found that the present scheme with the 

LU-SGS method is more efficient than that with the explicit Euler method, and the speedup ratio is about 

2 to 5. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the last few decades, the gas kinetic scheme (GKS) has been 

developed rapidly and applied in a wide range of fluid flow prob- 

lems, such as in compressible flows [1–3] , chemical reaction flows 

[4] , magneto hydrodynamics [5] , rarefied flows [6,7] , turbulence 

flows [8,9] , etc. In GKS, the finite volume method (FVM) or the 

finite difference method (FDM) is usually applied to discretize the 

macroscopic governing equations and the local solution of Boltz- 

mann equation is utilized to compute the numerical fluxes of con- 

servative variables at the cell interface. Since the numerical fluxes 

are reconstructed from the local solution of physical equation in- 

stead of numerical approximation, the GKS is robust, positively- 

preserving and satisfies the entropy condition spontaneously [10] . 
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The conventional GKS usually computes the numerical fluxes at 

the cell interface by the local integral solution of Boltzmann equa- 

tion with BGK collision model and Maxwellian distribution func- 

tion [1,2,11–15] . For simulation of compressible flows, the local 

integral solution of Boltzmann equation is quite complicated due 

to the discontinuity of conservative variables and their derivatives 

at the cell interface [11–12] . By assuming that the flow variables 

and their derivatives at the cell interface are changed smoothly, 

the conventional GKS has been simplified by Su et al. [16] for 

simulation of incompressible isothermal flows and by Xu and Lui 

[17] for solving incompressible thermal flows. These methods can 

be viewed as the limiting case of conventional GKS with the re- 

duced local integral solution of Boltzmann equation at the cell in- 

terface. Subsequently, Xu and He [18] and Guo et al. [19] discarded 

the energy equation and applied the isothermal distribution func- 

tion to further simplify the conventional GKS for simulation of in- 

compressible isothermal flows. On the other hand, it is worth not- 

ing that the above incompressible GKS showed some deficiencies 

at high Reynolds numbers, such as artificial oscillation in the pres- 
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sure distribution [18] . As indicated by Chen et al. [20] , the assump- 

tion of smooth distribution of flow variables and their derivatives 

at the cell interface may destroy the robustness of incompressible 

GKS at high Reynolds numbers. To resolve this problem, they pro- 

posed a GKS with discontinuous derivatives at the cell interface, 

i.e. the scheme with weak discontinuity, for simulation of incom- 

pressible isothermal flows. Their scheme can effectively improve 

the numerical stability of incompressible GKS, while its implemen- 

tation is almost as complicated as the compressible one. 

Also aiming at the calculation of numerical fluxes by the lo- 

cal solution of Boltzmann equation, a series of simplified gas ki- 

netic schemes are proposed by Shu and his coworkers [21–23] . For 

the three-dimensional (3D) case, the simplified GKS is termed as 

sphere function-based GK S (SGK S) [22,23] . There are mainly two 

improvements of SGKS as compared with the Maxwellian function- 

based GKS [1,2,11–15] . The first one is to replace the Maxwellian 

distribution function by a simple sphere function so that the in- 

tegrals for conservation forms of moments in the infinity domain 

for the Maxwellian function-based GKS can be reduced to those 

in the finite domain (integrals along the spherical surface) for the 

SGKS. The second one is to use the difference of equilibrium distri- 

bution functions at the cell interface and its surrounding points to 

approximate the non-equilibrium distribution function so that the 

local solution of Boltzmann equation can be expressed in an al- 

gebraic form. These simplifications make the computation of SGKS 

be simpler and more efficient than the corresponding Maxwellian 

function-based GKS. On the other hand, the formulations of SGKS 

are determined by the integral domain along the spherical surface, 

which is located at ( u, v, w ) with radius c , where ( u, v, w ) is the 

macroscopic flow velocity and c is proportional to the sound speed. 

For compressible flows, the sphere is usually not symmetric at the 

cell interface. This leads the calculation of numerical fluxes at the 

cell interface for the SGKS to be relatively complicated as com- 

pared with the conventional Navier–Stokes solvers [24,25] . How- 

ever for incompressible flows, the sphere at the cell interface can 

be approximately considered to be symmetric as the flow velocity 

is far less than the sound speed. Besides that, the energy equation 

is usually not needed for simulation of incompressible isothermal 

flows as shown in the works of Xu and He [18] and Guo et al. [19] . 

Based on these facts, a simplified SGKS is developed to improve 

the computational efficiency for simulation of incompressible flows 

in this work. In the method, the formulations of numerical fluxes 

at the cell interface can be expressed concisely and explicitly. In 

addition, like the original SGKS, the discontinuity of conservative 

variables and their derivatives at the cell interface are still kept in 

the simplified SGKS so as to keep good numerical stability at high 

Reynolds numbers. 

For solving fluid flow problems, the time-implicit scheme has 

achieved great advancements due to its high efficiency and stabil- 

ity. In the implicit scheme, the approximate factorization is usu- 

ally adopted to get the linearized Jacobian matrix and the itera- 

tive method is applied to solve the derived linear system. One of 

the widely-used iterative methods is the matrix-free Lower-Upper 

Symmetric Gauss-Seidel (LU-SGS) [26–28] method. In this method, 

the derived linear system can be solved directly by a forward and 

a backward sweep. Thus, the LU-SGS method requires little com- 

putational effort compared to other implicit schemes, such as the 

Alternating Direction Implicit (ADI) scheme [29,30] . Due to its sim- 

plicity, the LU-SGS method has been used in GKS for simulation 

of both continuous flow [13,31–34] and rarefied flow [35,36] . In 

the work of Xu et al. [13] , a LU-SGS method-based implicit GKS 

was developed for simulation of hypersonic viscous flow. By us- 

ing the implicit GKS and kinetic boundary conditions, Li and Fu 

[31] studied two typical flows in the near continuum regime, i.e., 

the hypersonic flow around a hollow cylinder flare and the flow 

in microchannels. Jiang and Qian [32] applied the implicit GKS 

and multi-grid technique to simulate 3D stationary transonic high- 

Reynolds number flows. In the work of Li et al. [33] , the implicit 

GKS on unstructured meshes was developed for solving high tem- 

perature equilibrium gas flows. Moreover, Tan and Li [34] com- 

pared the performance of implicit GKS with the LU-SGS method 

and the preconditioned generalized minimum residual (GMRES) 

method. Note that in all the above implicit GKS, the Maxwellian 

distribution function is adopted for calculation of the numerical 

fluxes at the cell interface. In addition, they are mainly used for 

simulation of compressible flows. In this work, the commonly-used 

LU-SGS method is introduced into the simplified SGKS to simu- 

late 3D incompressible isothermal flows. The combined scheme is 

called as implicit simplified SGKS in the following text. The com- 

putational accuracy and efficiency of the developed scheme are 

validated by simulating the 3D lid-driven cavity flow and the flow 

over a backward-facing step. 

2. Incompressible Navier–Stokes equations, Boltzmann 

equation and sphere function 

2.1. Incompressible Navier–Stokes equations and FVM discretization 

The macroscopic governing equations based on mass and mo- 

mentum conservation laws for incompressible isothermal flows can 

be written in a weakly compressible form as: 

∂ρ

∂t 
+ ∇ � ( ρu ) = 0 (1) 

∂ρu 

∂t 
+ ∇ � ( ρuu + pI ) = ∇ �

{
μ

[∇u + ( ∇u ) 
T 
]}

(2) 

where ρ , u , p and μ are respectively the density, velocity, pressure 

and dynamic viscosity of fluid flow. I is the unit tensor. 

As the simplified sphere function-based gas kinetic scheme 

(SGKS) will be applied to compute the numerical fluxes at the cell 

interface, we prefer to define the conservative variables at cell cen- 

ters and discretize the governing Eqs. (1) and (2) by finite volume 

method (FVM). For the 3D case, Eqs. (1) and (2) discretized by FVM 

can be written as 

d ( �I W I ) 

dt 
= −

N f ∑ 

i =1 

F ni S i (3) 

where I is the index of a control volume, �I and N f represent the 

volume and the number of the faces of the control volume I , re- 

spectively. S i denotes the area of the i th face of the control volume. 

The conservative variable vector W and flux vector F n are given by, 

W = ( ρ, ρu, ρv , ρw ) 
T (4) 

F n = 

(
F ρ, F ρu , F ρv , F ρw 

)T 
(5) 

where u = ( u, v , w ) is the velocity vector expressed in the global 

Cartesian coordinate system. There are two keys for solving Eq. (3) . 

One is the numerical method for calculation of fluxes F n , and the 

other one is the iterative algorithm for updating the conservative 

variables W . They will be discussed in Sections 3 and 4 , respec- 

tively. 

For the convenience of derivation, the local coordinate system 

defined at the cell interface is introduced in this work. In the local 

coordinate system, x 1 -axis is taken as the normal direction point- 

ing always outwards of the cell interface, x 2 -axis and x 3 -axis are 

chosen as two tangential directions on the cell interface, which 

are mutually orthogonal. The conservative variables and fluxes ex- 

pressed in the local coordinate system can be written as 

W = ( ρ, ρu 1 , ρu 2 , ρu 3 ) 
T (6) 
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