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In the present study, the first, second and third orders of the TRMC scheme (TRMC1, TRMC2 and TRMC3 

schemes) are employed to numerically investigate the Argon flow over a flat nano-plate with different 

free stream velocities and variety of Knudsen numbers. The simulations cover flow regimes from early 

slip to early transition regimes (0.00129 ≤ Kn ≤ 0.09). Higher order terms in the Wild sum expansion 

are considered to obtain higher order collisions. The results are compared with those from the standard 

DSMC method. Comparisons show that among the studied schemes, the results obtained from the TRMC3 

scheme have excellent agreement with the ones from the DSMC method. On the other hand, the results 

of the TRMC1 and TRMC2 schemes show deviations compared to those from the DSMC method. The 

deviations are more pronounced for the temperature and pressure distributions. Moreover, the present 

investigation illustrates that as the Knudsen number increases the accuracy of lower orders of the TRMC 

scheme improves. It is observed that truncating the Wild sum expansion up to the third order approxi- 

mation of the TRMC scheme, may be a proper alternative method for the DSMC method in simulating the 

flow over the nano-plate for Knudsen numbers 0.00129 ≤ Kn ≤ 0.09 with reasonable accuracy and simplic- 

ity in mathematics. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Navier–Stokes equations lose the capability of simulating the 

flow accurately, when the characteristic length of the flow is com- 

parable to the mean free path. For such flows, the governing equa- 

tion is the Boltzmann equation of kinetic theory [1,2] . During the 

past decades, the direct simulation Monte Carlo (DSMC) method 

has been extensively adopted for the numerical solution of the 

Boltzmann equation in rarefied regimes [1–3] . Despite the sim- 

plicity and reasonable accuracy of the DSMC method, high com- 

putational expenses of the flow simulations is the main concern. 

The computational expenses of the DSMC method drastically in- 

crease as the Knudsen number decreases, where the expenses of 

the DSMC method cannot be justified for the flows near the con- 

tinuum region. Hence, introducing schemes to reduce the compu- 

tational expenses of numerical solution of the Boltzmann equa- 

tion, are highly interested [3–7] . Recently, the time relaxed Monte 

Carlo (TRMC) method has been introduced as a simple and effi- 

cient method to numerically solve the Boltzmann equation in the 
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flows with wide variation of Knudsen numbers. In the algorithm of 

the TRMC scheme, time discretizations are obtained from the Wild 

[8] sum expansion with the higher order collisions being replaced 

by the local Maxwellian distribution [9] . 

It is illustrated that the TRMC method performs in the same 

way as the standard DSMC method for large Knudsen numbers, 

while local Maxwellian distribution replaces the time consum- 

ing collision calculations, as the Knudsen number decreases. Fur- 

thermore, the capability of adopting larger time steps compared 

to the ones in the DSMC method is another advantages of the 

TRMC scheme over the standard DSMC method [3] . On the other 

hand, complexity of the TRMC scheme, especially for higher or- 

der schemes, is the main drawback of the scheme. Pareschi and 

Russo [10] performed the stability analysis on the TRMC scheme 

and proved the A-stability and L-stability of the scheme. More- 

over, using the TRMC scheme they obtained reasonable solution 

of the Kac equation compared to the results from standard DSMC 

method. Furthermore, Pareschi et al. [11–13] introduced algo- 

rithm for the TRMC scheme using the variable hard sphere model 

for inter-molecular collisions. They also studied one-dimensional 

shock wave problem and obtained reasonable results compared to 

the ones from the standard DSMC method. Pareschi and Trazzi 

[3] presented algorithms to obtain the first and second orders 

of the TRMC scheme that simultaneously preserve the conserva- 
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Nomenclature 

μ the mean collision frequency, kinematic viscosity 

ρ density 

τ relaxed time, shear stress 

F transformed probability distribution function 

f probability distribution function 

Kn Knudsen number 

L characteristic length 

M local Maxwellian distribution 

P collisional operator, pressure 

Q collisional operator 

T temperature 

t time 

U velocity 

v velocity vector 

Subscripts 

∞ 

free stream condition 

mps most probable molecular thermal speed 

x , y x and y directions, respectively 

tion of mass, momentum, and energy. They also simulated the gas 

flow around an obstacle using the TRMC method and obtained 

an appreciable reduction in the CPU time, compared to that from 

the standard DSMC method. Foreseeing higher accuracies, Russo 

et al. [14] introduced the third order TRMC scheme by consid- 

ering higher order collisions in truncating the Wild sum expan- 

sion. They performed the TRMC and DSMC methods to investi- 

gate the Couette flow for a wide variety of Knudsen numbers and 

several wall velocities. The comparisons indicated that the den- 

sity, velocity and temperature profiles, obtained from the TRMC 

scheme, are in excellent agreement with the ones from the DSMC 

method. Moreover, Ganjaei and Nourazar [15] studied Argon and 

Helium mixture flow inside a rotating cylinder using the TRMC 

and DSMC methods. They used Dalton’s law for partial pressures 

of each species and showed that the results of TRMC method are 

in excellent agreement with the analytical solution. They reached 

more accurate results using the TRMC scheme, compared to the 

results from standard DSMC scheme. Trazzi et al. [16] introduced 

the recursive TRMC scheme to obtain uniform accuracy in time, in- 

dependent of time step. They obtained considerable improvement 

in the computational efficiency of simulating the space homoge- 

neous test cases and non-homogeneous stationary shock problem, 

in comparison to the standard DSMC method. Most recently, Di- 

marco and Parechi [17] decomposed the collision operator of the 

Boltzmann equation into an equilibrium and a non-equilibrium 

parts and introduced the exponential Runge–Kutta scheme. They 

performed the first and second orders of integrating factor (IF) 

scheme to study the heat flux in a space homogeneous shock wave 

problem. They obtained results with excellent agreement with the 

ones from the standard DSMC method for Kn = 0 . 001 , while both 

the first and second orders of IF scheme showed significant er- 

ror for the flow with Kn = 0 . 0 0 01 . Furthermore, Eskandari and 

Nourazar [18] performed the first, second and third orders of the 

TRMC scheme to study a lid-driven micro cavity flow with dif- 

ferent lid velocities and Knudsen numbers. They obtained results 

with excellent agreement with the ones from the standard DSMC 

method, using the third order time relaxed Monte Carlo (TRMC3) 

scheme. 

1.1. The purpose of the present work 

The present work focuses on investigating the truncation 

effects of the Wild sum expansion on the accuracy of the 

TRMC scheme. Three orders of the TRMC scheme called TRMC1, 

TRMC2 and TRMC3 schemes are considered accordingly. Argon 

flow over a flat nano-plate with different free stream veloci- 

ties and several Knudsen numbers is considered as the bench- 

mark problem. The Knudsen numbers cover flows from early 

slip to early transition regimes (0.00129 ≤ Kn ≤ 0.09). The obtained 

results are compared with the ones either from the standard 

DSMC method or the results reported from the hybrid DSMC-NS 

scheme [19] . 

2. Mathematical description 

2.1. The Boltzmann equation 

The Boltzmann equation for a single component mono-atomic 

dilute gas in the absence of external forces, is described by the 

following equation, where the bilinear operator Q ( f , f ) describes the 

intermolecular collisions [1,2] : 

∂ f 

∂t 
+ υ · ∇ x f = 

1 

Kn 

Q( f, f ) . (1) 

Considering Q( f, f ) = P ( f, f ) − μ f, the Boltzmann equation takes 

the form below [5,8,20] : 

∂ f 

∂t 
+ υ · ∇ x f = 

1 

Kn 

( P ( f, f ) − μ f ) . (2) 

P ( f , f ) is a symmetric bilinear operator describing the collision ef- 

fects of the molecules and the parameter μ � = 0 is the mean col- 

lision frequency. It is common to split the Boltzmann Eq: (2) into 

the equation of pure convection step (i.e. Q ( f , f ) ≡ 0) (3) and the 

equation of collision step (i.e. υ · ∇ x f ≡ 0 ) (4) [1,3,9,16,21] . 

∂ f 

∂t 
+ υ · ∇ x f = 0 . (3) 

∂ f 

∂t 
= 

1 

Kn 

(P ( f, f ) − μ f ) . (4) 

The equation of convection step (3) can be directly solved leaving 

only concerns about the equation of collision step (4) . 

2.2. The DSMC approach 

The DSMC approach is simply obtained by applying the Euler 

upwind scheme to the equation of collision step (4) : 

f n +1 = 

(
1 − μ�t 

Kn 

)
f n + 

(
μ�t 

Kn 

)
P ( f, f ) 

μ
. (5) 

Mathematical equation of the DSMC method (5) can be probabilis- 

tically interpreted in the following way: 

In order to sample a particle from f n +1 , it shall be sampled 

from f n with probability of ( 1 − μ�t/Kn ) and shall be sampled 

from P ( f , f )/ μ with probability of μ�t / Kn . Since probability of 

event can accept neither negative values nor values larger than 

unity, the time step in the DSMC method shall be selected with 

the following consideration: 0 ≤ ( μ�t / Kn ) ≤ 1 [3] . 

2.3. The TRMC approach 

The relaxed time τ and the transformed probability distribution 

function F (v , τ ) are described as the followings [3,9] : 

τ = (1 − e −μt/Kn ) . (6) 

F (v , τ ) = f (v , τ ) e −μt/Kn . (7) 
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