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a b s t r a c t 

A conservative approach for MPI-based parallelization of tridiagonal compact schemes is developed in 

the context of multi-block finite-volume methods. For each block, an enlarged linear system is solved by 

overlapping a certain number of neighbour cells from adjacent sub-domains. The values at block-to-block 

boundary faces are evaluated by a high-order centered approximation formula. Unlike previous methods, 

conservation is retained by properly re-computing the common interface value between two neighbour- 

ing blocks. Numerical tests show that parallelization artifacts decrease significantly as the number of 

overlapping cells is increased, at some expense of parallel efficiency. A reasonable trade-off between ac- 

curacy and performances is discussed in the paper with reference to both the spectral properties of the 

method and the results of fully turbulent numerical simulations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Compact schemes are widely employed in numerical simula- 

tions of turbulent flows, because of their beneficial resolution 

properties and high overall accuracy [1] . In contrast to classical ex- 

plicit schemes, compact methods are global and require the solu- 

tion of a tri- or penta-diagonal linear system to provide the desired 

derivatives or interpolated values [2] . The implicit nature of such 

methods leads to a difficult implementation in a parallel frame- 

work, especially when a MPI-based domain decomposition tech- 

nique is employed. This issue may preclude the potential bene- 

fits of compact methods for direct (DNS) or large-eddy simulations 

(LES) of turbulence, for which massively parallel computations are 

mandatory. Several algorithms have been developed over the years 

to tackle this problem efficiently, each with pros and cons; the 

approaches fall mainly into three categories, which are briefly re- 

viewed as follows. 

The first category is typically referred to as transpose methods, 

and is popular in the pseudo-spectral community. In this case, the 

computational domain is partitioned along one (or two) dimen- 

sions at a time ( slabs or pencils respectively), so that the applica- 

tion of the global scheme can be performed exactly along the re- 

maining direction(s). Then, the computational space is transposed 

by means of all-to-all communications to allow completion of the 
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algorithm [3–5] . Although in this case the parallelization is free 

of errors (i.e., the solution is identical to the serial one), the re- 

sulting approach is very communication intensive, as the collective 

communications require to exchange a volume of data which in- 

creases in size as N 

3 , being N the number of unknowns of each 

one-dimensional computation - in contrast with the N 

2 scaling of 

conventional techniques. On the other hand, upon use of optimized 

libraries (such as MPI_Alltoall and FFTW3) and careful processor 

mapping, some authors were able to obtain excellent scalability 

on up to O(10 5 ) processors [3,6] . By construction, the transpose 

method is especially suited for simple cartesian domains, while an 

appropriate generalization to complex geometries may require in- 

volved computer programming to properly take into account the 

domain topology. Also, the number of processors is limited to no 

more than N (or N 

2 ) when slabs (or pencils) are used. 

Alternatives to the transpose method are represented by algo- 

rithmic approaches, i.e., methods that aim to parallelize the solu- 

tion of the banded linear system. Notable examples include the 

pipelined Thomas [7] , the parallel diagonal dominant [8] (which 

are limited to tridiagonal systems), and the SPIKE algorithms [9] . 

These methods are powerful and provide exact (pipelined Thomas, 

SPIKE) or bounded (parallel diagonal dominant) parallelizations er- 

rors, but are usually susceptible to penalties in efficiency due to 

idle times. Also, the computational complexity of the computer 

code is generally highly increased. To the authors’ knowledge, the 

use of such methods in computational fluid dynamics (CFD) ap- 

plications is relatively limited. For a comparison of the pipelined 

Thomas and parallel diagonal dominant algorithms for flow simu- 
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lations, see [10] . The SPIKE algorithm has been recently applied to 

large-eddy simulation in [11] . 

The third family of methods is constituted by the so-called 

boundary approximation approach (BAA). In this case, the origi- 

nal linear system is split into disjoint matrix systems that can be 

solved independently for each sub-domain by exchanging a (small) 

number of halo cells. The method is thus naturally suited to the 

widespread MPI-based multi-block partitioning technique, which is 

at the base of many finite-difference and finite-volume CFD codes. 

The major drawback of this procedure is that the global depen- 

dence of the compact scheme is broken at block-to-block inter- 

faces, leading to a certain degree of deterioration similar to the one 

occurring at regular boundaries. These effects are mainly attributed 

to the altered dissipation and dispersion properties due to the 

boundary closure [12] . However, it is well known that the spectral 

characteristics of the discretization are crucial for an accurate nu- 

merical simulation of multi-scale and acoustics phenomena, such 

as compressible turbulence [13] . Several boundary approximations 

have been developed in recent years to reduce parallelization arti- 

facts. These mainly rely on overlapping grids [14,15] or halo points 

[16] with proper boundary closures at adjacent sub-domain in- 

terfaces. In some cases, the resulting schemes are optimized in 

wavenumber space for accurate acoustic computations, or used 

in conjunction with suitable filtering operators to remove high- 

frequency errors [17] . Particularly Gaitonde & Visbal [15] suggested 

to use a region of overlap between adjacent subdomains aimed 

to reduce parallelization artifacts in their finite-difference method; 

boundary closure was achieved by high-order one-sided formulas. 

However, their approach is not locally conservative, which might 

be troublesome for flows with shocks [18] . 

The present work falls within the BAA category and focuses 

on tridiagonal compact schemes. An overlapping strategy is de- 

veloped in order to preserve accuracy on the interior points of 

each sub-domain; however, boundary closure is achieved by ex- 

plicit centered formulas. Unlike previous studies, which have been 

concerned with the finite-difference method, a finite-volume (FV) 

discretization is employed here. A straightforward implementation 

of the overlapping method in a FV framework leads to the formal 

loss of local conservation at block-to-block interfaces. In this work, 

a method aimed to overcome this issue is developed so to retain 

the inherent conservation properties of the finite-volume method. 

The proposed algorithm is thus suitable for high-fidelity, paral- 

lel computations of compressible shock-free turbulent flows, and 

could serve as a building block for flows with discontinuities. 

The paper is organized as follows. In Section 2 , the relevant 

governing equations are introduced; then, the employed finite- 

volume discretization and serial numerical method are described. 

Section 3 presents the parallel method. A modified wavenumber 

analysis is reported in Section 4 , while Section 5 reports a series 

of numerical tests aimed to characterize the accuracy of the pro- 

posed approach. Section 6 focuses on efficiency and parallel per- 

formances. Concluding remarks are given in Section 7 . 

2. Governing equations and serial numerical method 

The fully compressible Navier-Stokes equations are considered 

in this work. In a three-dimensional Cartesian coordinate frame ( x, 

y, z ), the motion of a gas with density ρ , velocity u = (u, v , w ) , 

pressure p , temperature T and total energy E is governed by the 

system: 

∂U 

∂t 
+ 

∂F x 

∂x 
+ 

∂F y 

∂y 
+ 

∂F z 

∂z 
= 0 , (1) 

where U is the vector of conservative variables, U = 

( ρ, ρu, ρv , ρw, E ) . The total energy E is defined as the sum 

of internal and kinetic energy, E = ρe + ρ| u | 2 / 2 . The vectors 

F x = F c x − F d x , F y = F c y − F d y and F z = F c z − F d z represent the fluxes 

along the three components. The inviscid (convective) fluxes are 

defined as: 

F c x = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρu 

ρu 

2 + p 

ρu v 

ρuw 

u (E + p) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, F c y = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρv 

ρu v 

ρv 2 + p 

ρv w 

v (E + p) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

F c z = 

⎛ 
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ρw 

ρuw 

ρv w 

ρw 

2 + p 

w (E + p) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (2) 

whereas the diffusive fluxes are 

F d x = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

τ11 

τ12 

τ13 

(τu ) 1 − q 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, F d y = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 

τ21 

τ22 

τ23 

(τu ) 2 − q 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

F d z = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

τ31 

τ32 

τ33 

(τu ) 3 − q 3 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (3) 

The stress tensor τ ij and the conductive heat flux q i are ex- 

pressed by the usual Newton’s and Fourier’s laws, respectively τi j = 

μ
(

∂u i 
∂x j 

+ 

∂u j 
∂x i 

− 2 
3 δi j 

∂u k 
∂x k 

)
and q i = −λ ∂T 

∂x i 
, where μ is the molecu- 

lar viscosity and λ the thermal conductivity of the fluid. Closure is 

achieved by means of the ideal-gas equation of state, p = ρRT . 

2.1. Finite-volume discretization 

The computational domain is partitioned into a structured grid 

of hexahedrons indexed by ( i, j, k ). The finite-volume method is 

based upon integration of Eq. (1) over a generic control volume �, 

yielding 

V i jk 

∂ ̄U i jk 

∂t 
+ 

∫ 
∂�

( F x n x + F y n y + F z n z ) dσ = 0 , (4) 

where V i jk = | �| is the volume of the region and 

Ū i jk = 

1 

V i jk 

∫ 
�

U d�. (5) 

The integral in Eq. (4) applies to each control-volume; as a con- 

sequence, surface integrals over inner cell faces cancel out and 

discrete global conservation of primary unknowns is guaranteed 

through the telescopic property. The built-in global conservation 

feature is indeed one of the major advantages of finite-volume 

methods. 

The meaning of the cell integral in Eq. (5) deserves further dis- 

cussion. In a so-called pointwise approach, nodal values U P are usu- 

ally supposed to be known at the cell-center, resulting in a second- 

order accurate average, i.e., Ū = U P + O(	2 ) , with 	 being a rele- 

vant grid spacing. Therefore, if high-order accuracy is seeked, cor- 

respondent high-order formulas are needed for the evaluation of 
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