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a b s t r a c t 

Direct simulations of the Navier–Stokes equations are performed to investigate the interaction between 

a nonlinear wave at the water surface and an interfacial wave at the fluid-mud layer below. A level-set 

method is employed to capture the air–water and water–mud interfaces. Despite the nonlinearity of the 

governing equations, the direct numerical simulation shows that the total wave-damping rate exhibits 

a remarkable consistency with the prediction of the linear theory. To reveal the underlying mechanism, 

we analyze the velocity and vortcity fields, energy transfer from the water to the mud, and energy dis- 

sipation. The detailed analysis of velocity and vorticity fields shows an appreciable nonlinear effect in 

the water but a relatively weak nonlinear effect in the fluid mud. The major pathway of transferring 

energy from the water to the mud is the pressure acting on the water–mud interface. The viscous dissi- 

pation of the energy also exhibits a local, significant nonlinear effect in the water. However, the excess 

and deficiency in the dissipation rate at different wave phases compared with the linear theory largely 

cancel each other, resulting in an overall wave-damping rate close to the prediction of the linear theory. 

Furthermore, the analysis of energy budgets elucidates a comprehensive picture of energy transport and 

dissipation in the wave–mud system. In the water, the horizontal motion first loses energy to the verti- 

cal motion through the pressure–strain correlation. The energy of the vertical motion is then transported 

downwards by the pressure and vertical advection. Across the water–mud interface, the vertical motion 

of the water transmits energy to the mud through the pressure work. In the mud, the energy of the ver- 

tical motion is transported downwards by the pressure and then redistributed to the horizontal motion 

through the pressure–strain correlation again. The energy of the horizontal motion is transported towards 

the mud bottom through the viscous diffusion and is finally dissipated. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fluid mud exists in many rivers, estuaries, and coasts around 

the world. A muddy layer can significantly attenuate water waves 

within several wavelengths [1–4] . The forcing of water waves can 

deform the lutoclines, and the Stokes drift can cause a horizontal 

transport of the mud [2,5,6] . The interaction between water waves 

and muddy seafloor is of great importance to the sediment trans- 

port in coastal and estuarine waters, remoting sensing of nearshore 

regions, and foundation of coastal structures, among many other 

environmental and engineering applications. These problems have 

motivated considerable studies on the underlying mechanism of 

wave–mud interactions. 
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Various theoretical models have been proposed to predict the 

damping rate of water waves propagating over fluid mud. Gade 

[1] firstly proposed a two-layer analytical model, with the upper 

layer of inviscid water and the lower layer of highly viscous fluid 

mud, to predict the attenuation of linear shallow water waves. 

Gade’s model was extended to linear intermediate-depth water 

waves by Dalrymple and Liu [7] (referred to as DL hereinafter), and 

the viscosity of water was considered in DL’s theory. This model 

agrees well with Gade’s laboratory experiment [1] . In addition, Ng 

[5] developed a two-fluid Stokes boundary layer model based on 

an asymptotic theory for a thin layer of fluid mud under water 

waves. All of these models show an exponential decay of linear si- 

nusoidal waves with the propagating distance. DL [7] found that 

the pressure working on the water–mud interface plays an impor- 

tant role in attenuating water waves and in the energy transfer 

from water waves to fluid mud. 

http://dx.doi.org/10.1016/j.compfluid.2017.04.015 
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While the interaction between linear water waves and mud has 

been studied extensively, waves in reality have finite amplitudes 

and the nonlinearity often needs to be considered. The nonlinear- 

ity is caused by the quadratic terms in the boundary conditions 

at the wave surface, which is neglected in the linear wave theory 

by only retaining the leading-order terms of the expansion with 

respect to the wave steepness. Nonlinear wave models account for 

the effects of higher-order terms. For example, Stokes [8] expanded 

the governing equations to the second order, and Schwartz [9] fur- 

ther extended the Stokes’ expansion to arbitrary order with the so- 

lution given numerically. Nonlinear waves differ from linear waves 

in the wave geometry and strain rate, among other quantities. The 

wave crest and trough of nonlinear waves are respectively steeper 

and flatter than those of linear waves with the same steepness 

[10] . The magnitude of the strain rate below the wave crest of a 

nonlinear wave is larger than that below the wave trough [10] . As 

a result, the dissipation rate, which is proportional to the square of 

the strain rate, is also stronger under the wave crest. Furthermore, 

wave nonlinearity causes the fluid particles under a water wave to 

drift towards the wave propagation direction, leading to a mean 

mass transport known as the Stokes drift [11] . 

Nonlinear wave models have been employed to study the wave 

damping by mud. Jiang and Zhao [12] and Jiang et al. [13] pro- 

posed a first-order analytical model to predict the attenuation of 

cnoidal waves with finite amplitudes in shallow water. In their 

model, Prandtl’s boundary-layer equations were used to describe 

energy dissipation in three boundary layers, one above the water–

mud interface, one below the interface, and one near the rigid bot- 

tom of the viscous fluid mud. The fluid motions outside of the 

boundary layers were assumed to be potential flows. In the ab- 

sence of wave–wave interactions, their model [12,13] revealed the 

influence of the wave height on the damping rate. Liu and Chan 

[14] replaced linear sinusoidal water waves with Boussinesq-type 

waves, and derived a set of Boussinesq equations. 

The above-mentioned models describe the damping of long 

waves, which can directly interact with mud seafloor. Sheremet 

and Stone [3] and Elgar and Raubenheimer [4] showed strong dis- 

sipation in both long and short waves in Louisiana Shelf. Sheremet 

et al. [15] ascribed this phenomenon to the coupling of short 

waves with the long waves directly impacted by the mud layer. 

Combing Ng’s wave dissipation model [5] for thin mud layers 

with a parabolic nonlinear wave model, Kaihatu et al. [16] re- 

lated the damping of short waves to subharmonic interactions 

between short waves and actively-dissipated long waves. Alam 

et al. [17] performed a perturbation based simulation of a three- 

wave system, and proposed quantitative prediction of energy trans- 

fer from short waves to long subharmonic waves via their near- 

resonant interactions for the dissipation by the mud. 

In addition to the theoretical analyses, numerical modeling of 

water waves traveling over fluid mud has also been developed. 

Damping rates of water waves based on theoretical models of 

wave–mud interactions are implemented as a dissipation term 

in numerical models of water waves [18,19] . Winterwerp et al. 

[18] and Rogers and Holland [20] used the dissipation models of 

Ng [5] and Gade [1] , respectively, to determine the dissipation 

term in the Simulating Waves Nearshore (SWAN) model. SWAN is 

a phase-averaged wave model in which each wave component is 

described using an energy density function in the spectral space, 

and it is capable of tracking the evolution of large-scale wave fields 

in both open sea and coastal areas involving various physical pro- 

cesses, such as the wind input, dissipation, and nonlinear wave–

wave interactions [21,22] . Some others used the Navier–Stokes 

equations to simulate the wave damping. Huang and Chen [23] ex- 

panded the Navier–Stokes equations to the first-order and second- 

order of a perturbation to develop a numerical model. Their model 

was used to simulate the damping of solitary waves propagating 

Fig. 1. Sketch of the domain for a water surface wave traveling over a mud layer. 

over mud. Niu and Yu [24] performed simulations of water waves 

propagating over muddy slopes using the volume of fluid (VOF) 

method for surface capturing and the k − ε model for the turbu- 

lence closure. Torres-Freyermuth and Hsu [25] also used the k − ε
model, but the governing Reynolds-Averaged Navier–Stokes (RANS) 

equations were derived from Eulerian two-phase flow equations 

with the equilibrium Eulerian approximation for sediment-laden 

flows. In the work of Hejazi et al. [26] , the Navier–Stokes equa- 

tions based on a Lagrangian–Eulerian description were simulated 

to capture the damping of nonlinear waves over fluid mud. 

Although a variety of theoretical and numerical models have 

been proposed to predict the attenuation rate of water waves over 

fluid mud, direct descriptions of the wave-damping process are 

rare in the literature. In the work of Hu et al. [27] , the interaction 

of breaking waves with a fluid mud layer was investigated based 

on the results of large-eddy simulations. In the present study, we 

perform direct simulations of the Navier–Stokes equations for non- 

breaking water waves with finite amplitudes propagating over vis- 

cous fluid mud, with the aim to directly resolve the flow details 

and to improve the understanding of the essential mechanism of 

the wave–mud interaction. 

The rest of this paper is organized as follows. The numerical 

method for the water–mud interaction problem is introduced in 

Section 2 . The temporal evolution of the water surface and the 

wave–mud interface is examined in Section 3.1 . Velocity and vor- 

ticity fields in the water and mud are analyzed in Section 3.2 , fol- 

lowed by analyses of water–mud energy transfer in Section 3.3 , en- 

ergy dissipation in Section 3.4 , and budget of energy in Section 3.5 . 

Finally, conclusions are presented in Section 4 . 

2. Numerical simulations 

2.1. Governing equations and numerical methods 

The sketch of a two-dimensional water surface wave traveling 

over a fluid-mud layer is shown in Fig. 1 . Following many previ- 

ous investigations [1,5,7,14,23] , we treat the mud at the bottom as 

a Newtonian fluid with larger density and viscosity than those of 

the water. The governing equations are solved in a fixed Cartesian 

coordinate system ( Fig. 1 ). The wave propagation direction and ver- 

tical direction are denoted as x and y , respectively. The undisturbed 

water surface is located at y = 0 . The height of the whole compu- 

tation domain including air, water, and mud is B , and the depths 

of water and mud are h and d , respectively. The wavelength of the 

water surface wave is λ. 
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