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a b s t r a c t 

A balanced-force control volume finite element method is presented for three-dimensional interfacial 

flows with surface tension on adaptive anisotropic unstructured meshes. A new balanced-force algorithm 

for the continuum surface tension model on unstructured meshes is proposed within an interface cap- 

turing framework based on the volume of fluid method, which ensures that the surface tension force and 

the resulting pressure gradient are exactly balanced. Two approaches are developed for accurate curva- 

ture approximation based on the volume fraction on unstructured meshes. The numerical framework also 

features an anisotropic adaptive mesh algorithm, which can modify unstructured meshes to better rep- 

resent the underlying physics of interfacial problems and reduce computational effort without sacrificing 

accuracy. The numerical framework is validated with several benchmark problems for interface advec- 

tion, surface tension test for equilibrium droplet, and dynamic fluid flow problems (fluid films, bubbles 

and droplets) in two and three dimensions. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Interfacial flows with surface tension appear in many engineer- 

ing applications, e.g. micro-fluidics, oil-and-gas transportation sys- 

tems, geophysical flows and nuclear reactors. These applications 

typically involve the motion of bubbles, droplets, fluid films and 

jets, featuring tremendous complexity in interfacial topology and a 

large range of spatial scales. 

A key requirement for modelling interfacial flows is a method 

for tracking or capturing the interface [1] . Numerous methods 

have been proposed and used to simulate interfacial flows on 

a fixed mesh, such as marker-and-cell [2] , volume-of-fluid (VOF) 

[1,3,4] , front-tracking [5] , level set [6,7] , phase field [8] and par- 

ticle [9] methods. In particular, VOF methods are widely used due 

to the inherent properties of: mass conservation, computational ef- 

ficiency and easy implementation. From a general point of view, 

there are two classes of algorithms to solve the transport equa- 

tion of volume fraction: geometric and algebraic computation [4] . 
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In the geometric VOF methods [1] , interfaces are first reconstructed 

from the volume fraction data so that a geometric profile is found 

which approximates the actual interface location. Then changes in 

volume fraction are calculated by integrating volume fluxes across 

cell boundaries, using flux splitting or unsplitting schemes. In the 

algebraic computation [10,11] , the interface is captured by solv- 

ing the transport equation of volume fraction with a differenc- 

ing scheme without reconstructing the interface, such as the flux- 

corrected transport scheme [10] and using the normalised variable 

diagram (NVD) [12] concept to switch between different differenc- 

ing schemes [11] . 

As the dynamics of interfacial flows are highly unsteady and 

the shape and location of the interface are changing during the 

simulation, interface calculation methods based on a fixed mesh 

need finer mesh resolution in order to capture the details, which 

will significantly increase computational efforts. The alternative is 

to consider the use of dynamically adaptive mesh methods, where 

the mesh resolution can vary in time in response to the evolv- 

ing solution fields. For example, a finer mesh could be placed 

around the interface during its development while a coarser mesh 

could be used away from the interface while the flow is less dy- 

namic. There are some examples of the use of adaptive mesh re- 

finement for structured meshes with volume of fluid [13] and 
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hybrid level set/front tracking [14] methods. Unstructured meshes 

are very attractive to deal with complex geometries in engineer- 

ing applications and there is an example of adaptive unstructured 

meshes with the level set method [15] . Recently, a novel algebraic 

VOF interface capturing method based on a compressive advection 

method on adaptive unstructured meshes has been developed by 

[16] and some examples of its application for multiphase flows in 

two dimensions can be found in [17,18] . It is also worth mention- 

ing that many computational domains have a high aspect ratio and 

most interfacial flow phenomena can possess strong anisotropies, 

therefore anisotropic mesh resolution may be required to optimally 

represent the dynamics of the flow. Some examples of anisotropic 

unstructured mesh adaptivity can be found in [19] . 

In this paper, we focus on the surface tension force model in 

three dimensions. Many different types of surface tension force 

model have been proposed in the past, where the continuum sur- 

face force (CSF) method [20] has been widely used in the level set 

and volume of fluid methods. The level set function is a smooth 

continuous function, which can estimate accurately the curvature 

for the surface tension, however the standard level set method 

might suffer from the mass conservation. The volume of fluid 

method is mass conservative, however it is difficult to calculate the 

surface tension force accurately due to the step function of the vol- 

ume fraction. This leads to the development of coupled level set 

and volume of fluid (CLSVOF) method [21] , which takes advantage 

of both methodologies. Recently the balanced-force algorithm for 

surface tension model has become popular in structured Cartesian 

grids due to the use of a height function for curvature calculation 

in the volume of fluid method [22] and the level set function in 

the CLSVOF method [23] . It has also been extended for adaptive 

mesh refinement for structured Cartesian grids [13] . However, less 

attention has been paid to the balanced-force algorithm for fully 

unstructured meshes, even without mesh adaptivity. 

The motivation for this work is to develop a balanced-force 

control volume finite element method for three-dimensional in- 

terfacial flows with surface tension on adaptive anisotropic un- 

structured meshes, which can modify unstructured meshes to bet- 

ter represent the underlying physics of interfacial problems and 

reduce computational efforts without sacrificing accuracy. A new 

balanced-force algorithm for the CSF model is proposed within 

the interface capturing framework based on the volume of fluid 

method. 

The remainder of this paper is organised as follows. Descrip- 

tion of the model and numerical methods is given in Section 2 . 

Numerical examples of pure advection, static drop in equilibrium, 

fluid films, bubbles and droplets are presented in Section 3 . Finally, 

some concluding remarks and future work are given in Section 4 . 

2. Mathematical model and numerical methods 

In this section, we first describe the mathematical model and 

then we present our numerical framework based on the control 

volume and finite element method. The new balanced-force algo- 

rithm for the CSF model is proposed within the interface capturing 

framework and discussed in detail. 

2.1. Governing equations 

In multi-component flows, a number of components exist in 

one or more phases (one phase is assumed here but is easily gen- 

eralised to an arbitrary number of phases or fluids). Let αi be the 

mass fraction of component i , where i = 1 , 2 , .., N c and N c denotes 

the number of components. The density and dynamic viscosity of 

component i are ρ i and μi , respectively. A constraint on the system 

is: 
N c ∑ 

i =1 

αi = 1 . (1) 

For each fluid component i , the conservation of mass may be de- 

fined as, 

∂ 

∂t 
(αi ) + ∇ · (αi u ) = 0 , i = 1 , 2 , . . . , N c , (2) 

and the equations of motion of an incompressible fluid may be 

written as: 

∂ (ρu ) 

∂t 
+ ∇ · ( ρu � u ) = −∇p + ∇ · [ μ(∇u + ∇ 

T u )] + ρg + F σ , 

(3) 

where t is the time, u is velocity vector, p is the pressure, the 

bulk density is ρ = 

∑ N c 
i =1 

αi ρi , the bulk dynamic viscosity is μ = ∑ N c 
i =1 

αi μi , g is the gravitational acceleration vector, and F σ is the 

surface tension force. In the present study, we focus on the sur- 

face tension model for interfacial flows with two components, i.e. 

N c = 2 . 

2.2. Numerical methods 

There are several numerical discretisation methods that solve 

the governing equations, such as the finite difference method, fi- 

nite volume method and finite element method [24] . The finite el- 

ement method with unstructured meshes is very attractive, as it 

provides accuracy and great flexibility in dealing with complex ge- 

ometries and moving interfaces. In addition, with the finite ele- 

ment method it is possible to develop a compact high-order dis- 

cretisation by applying higher-order polynomial expansions within 

every element. 

2.2.1. Computational grid 

The numerical framework consists of control volume and fi- 

nite element formulation and also a discontinuous/continuous fi- 

nite element pair. In the formulation, the domain is discretised 

into triangular or tetrahedral elements and in this work, they are 

either P 1 DG-P 1 elements (linear discontinuous velocity between 

elements and linear continuous pressure between elements) or 

P 1 DG-P 2 elements (linear discontinuous velocity between elements 

and quadratic continuous pressure between elements) [16] . Fig. 1 

shows the locations of the degrees of freedom for the P 1 DG-P 1 and 

P 1 DG-P 2 elements and the boundaries of the control volumes in 

two dimension (2D). 

2.2.2. Temporal discretisation 

Time stepping schemes include first-order schemes, such as the 

explicit forward Euler and implicit backward Euler schemes. The 

explicit scheme is more easy and straightforward to implement 

but imposes restriction on the time step size due to the Courant–

Friedrichs–Lewy (CFL) condition, whereas the implicit scheme is 

stable for large Courant numbers but is more dissipative. A new 

time discretisation scheme is employed here. When high-order dis- 

cretisation is sought, the method is based on traditional Crank–

Nicolson time stepping. The Crank–Nicolson method is often used 

because it has the simplicity of a two-level time stepping method, 

is unconditionally stable and second-order accurate. However, for 

interface-capturing applications, the time discretisation scheme is 

based on the explicit forward Euler time stepping method. This in- 

troduces negative dissipation and is thus a compressive scheme 

which helps maintain sharp interfaces. The use of time steps of 

the order of the grid Courant number and above can result in nu- 

merical oscillations and unphysical solutions. For this reason an 

adaptive θ parameter is introduced [16] and shown explicity in 

Section 2.2.3 , in which the forward Euler time stepping method 

is obtained for θ = 0 , the Crank–Nicolson method is obtained for 

θ = 0 . 5 and the backward Euler method is obtained for θ = 1 . 
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